224 research outputs found

    Tracking Data-Flow with Open Closure Types

    Get PDF
    Type systems hide data that is captured by function closures in function types. In most cases this is a beneficial design that favors simplicity and compositionality. However, some applications require explicit information about the data that is captured in closures. This paper introduces open closure types, that is, function types that are decorated with type contexts. They are used to track data-flow from the environment into the function closure. A simply-typed lambda calculus is used to study the properties of the type theory of open closure types. A distinctive feature of this type theory is that an open closure type of a function can vary in different type contexts. To present an application of the type theory, it is shown that a type derivation establishes a simple non-interference property in the sense of information-flow theory. A publicly available prototype implementation of the system can be used to experiment with type derivations for example programs.Comment: Logic for Programming Artificial Intelligence and Reasoning (2013

    Effect systems revisited—control-flow algebra and semantics

    Get PDF
    Effect systems were originally conceived as an inference-based program analysis to capture program behaviour—as a set of (representations of) effects. Two orthogonal developments have since happened. First, motivated by static analysis, effects were generalised to values in an algebra, to better model control flow (e.g. for may/must analyses and concurrency). Second, motivated by semantic questions, the syntactic notion of set- (or semilattice-) based effect system was linked to the semantic notion of monads and more recently to graded monads which give a more precise semantic account of effects. We give a lightweight tutorial explanation of the concepts involved in these two threads and then unify them via the notion of an effect-directed semantics for a control-flow algebra of effects. For the case of effectful programming with sequencing, alternation and parallelism—illustrated with music—we identify a form of graded joinads as the appropriate structure for unifying effect analysis and semantics

    Coeffects: A calculus of context-dependent computation

    Get PDF
    The notion of context in functional languages no longer refers just to variables in scope. Context can capture additional properties of variables (usage patterns in linear logics; caching requirements in dataflow languages) as well as additional resources or properties of the execution environment (rebindable resources; platform version in a cross-platform application). The recently introduced notion of coeffects captures the latter, whole-context properties, but it failed to capture fine-grained per-variable properties. We remedy this by developing a generalized coeffect system with annotations indexed by a coeffect shape. By instantiating a concrete shape, our system captures previously studied flat (whole-context) coeffects, but also structural (per-variable) coeffects, making coeffect analyses more useful. We show that the structural system enjoys desirable syntactic properties and we give a categorical semantics using extended notions of indexed comonad. The examples presented in this paper are based on analysis of established language features (liveness, linear logics, dataflow, dynamic scoping) and we argue that such context-aware properties will also be useful for future development of languages for increasingly heterogeneous and distributed platforms

    Commensurate to incommensurate magnetic phase transition in Honeycomb-lattice pyrovanadate Mn2V2O7

    Get PDF
    We have synthesized single crystalline sample of Mn2_2V2_2O7_7 using floating zone technique and investigated the ground state using magnetic susceptibility, heat capacity and neutron diffraction. Our magnetic susceptibility and heat capacity reveal two successive magnetic transitions at TN1=T_{N1} = 19 K and TN2=T_{N2} = 11.8 K indicating two distinct magnetically ordered phases. The single crystal neutron diffraction study shows that in the temperature (TT) range 11.8 K T\le T \le 19 K the magnetic structure is commensurate with propagation vector k1=(0,0.5,0)k_1 = (0, 0.5, 0), while upon lowering temperature below TN2=T_{N2} = 11.8 K an incommensurate magnetic order emerges with k2=(0.38,0.48,0.5)k_2 = (0.38, 0.48, 0.5) and the magnetic structure can be represented by cycloidal modulation of the Mn spin in acac-plane. We are reporting this commensurate to incommensurate transition for the first time. We discuss the role of the magnetic exchange interactions and spin-orbital coupling on the stability of the observed magnetic phase transitions.Comment: 8 pages, 7 figure

    Structural Evolution of One-dimensional Spin Ladder Compounds Sr14-xCaxCu24O41 with Ca doping and Related Hole Redistribution Evidence

    Full text link
    Incommensurate crystal structures of spin ladder series Sr14-xCaxCu24O41 (x=3, 7, 11, 12.2) were characterized by powder neutron scattering method and refined using the superspace group Xmmm(00{\gamma})ss0 (equivalent to superspace group Fmmm(0,0,1+{\gamma})ss0); X stands for non-standard centering (0,0,0,0), (0,1/2,1/2,1/2), (1/2,1/2,0,0), (1/2,0,1/2,1/2)) with a modulated structure model. The Ca doping effects on the lattice parameters, atomic displacement, Cu-O distances, Cu-O bond angles and Cu bond valence sum were characterized. The refined results show that the CuO4 planar units in both chain and ladder sublattices become closer to square shape with an increase of Ca doping. The Cu bond valence sum calculation provided new evidence for the charge transfer from the chains to ladders (approximately 0.16 holes per Cu from x=0 to 12.2). The charge transfer was attributed to two different mechanisms: (a) the Cu-O bond distance shrinkage on the ladder; (b) increase of the interaction between two sublattices, resulting in Cu-O bonding between the chains and ladders. The low temperature structural refinement resulted in the similar conclusion, with a slight charge backflow to the chains.Comment: 29 pages, 16 figures, submitted to physics review b, accepte

    Hilbert-Post completeness for the state and the exception effects

    Get PDF
    In this paper, we present a novel framework for studying the syntactic completeness of computational effects and we apply it to the exception effect. When applied to the states effect, our framework can be seen as a generalization of Pretnar's work on this subject. We first introduce a relative notion of Hilbert-Post completeness, well-suited to the composition of effects. Then we prove that the exception effect is relatively Hilbert-Post complete, as well as the "core" language which may be used for implementing it; these proofs have been formalized and checked with the proof assistant Coq.Comment: Siegfried Rump (Hamburg University of Technology), Chee Yap (Courant Institute, NYU). Sixth International Conference on Mathematical Aspects of Computer and Information Sciences , Nov 2015, Berlin, Germany. 2015, LNC

    Double superconducting transition in the filled skutterudite PrOs4Sb12 and sample characterizations

    Get PDF
    A thorough characterization of many samples of the filled skutterudite compound PrOs4Sb12 is provided. We find that the double superconducting transition in the specific heat Tc1~1.89K and Tc2~1.72K tends to appear in samples with a large residual resistivity ratio, large specific heat jump at the superconducting transition and with the highest absolute value of the specific heat above Tc1. However, we present evidence which casts doubt on the intrinsic nature of the double superconducting transition. The ratio of the two specific heat jumps \Delta C(Tc1)/\Delta C(Tc2) shows a wide range of values on crystals from different batches but also within the same batch. This ratio was strongly reduced by polishing a sample down to 120um. Remarkably, three samples exhibit a single sharp transition of ~15mK in width at Tc~1.7K. The normalized specific heat jump (C-Cnormal)/Cnormal at Tc of two of them is higher than ~32% so larger than the sum of the two specific heat jumps when a double transition exists. As an evidence of better quality, the slope in the transition is at least two time steeper. We discuss the origins of the double transition; in particular we consider, based on X-ray diffraction results, a scenario involving Pr-vacancies. The superconducting phase diagram under magnetic field of a sample with a single transition is fitted with a two-band model taking into account the good values for the gap as deduced from thermal conductivity measurements.Comment: 10 pages, 9 figures, 2 tables, submitted to Physical review

    Kaemika app, Integrating protocols and chemical simulation

    Full text link
    Kaemika is an app available on the four major app stores. It provides deterministic and stochastic simulation, supporting natural chemical notation enhanced with recursive and conditional generation of chemical reaction networks. It has a liquid-handling protocol sublanguage compiled to a virtual digital microfluidic device. Chemical and microfluidic simulations can be interleaved for full experimental-cycle modeling. A novel and unambiguous representation of directed multigraphs is used to lay out chemical reaction networks in graphical form

    Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases

    Full text link
    Although superspace formalism has become the standard approach for the analysis of structurally modulated crystals, it has remained during the last thirty years almost unexplored as a practical tool to deal with magnetic incommensurate structures. This situation has recently changed with the development of new computer tools for magnetic phases based on this formalism. In this context we show here that, as in the case of nonmagnetic incommensurate systems, the concept of superspace symmetry provides a simple, efficient and systematic way to characterize the symmetry and rationalize the structural and physical properties of incommensurate magnetic materials. The method introduces significant advantages over the most commonly employed method of representation analysis for the description of the magnetic structure of a crystal. But, more importantly, in contrast with that method, it consistently yields and classifies all degrees of freedom of the system. The knowledge of the superspace group of an incommensurate magnetic material allows to predict its crystal tensor properties and to rationalize its phase diagram, previous to any appeal to microscopic models or mechanisms. This is especially relevant when the properties of incommensurate multiferroics are being studied. We present first a summary of the superspace method under a very practical viewpoint particularized to magnetic modulations. Its relation with the usual representation analysis is then analyzed in detail, with the derivation of important general rules for magnetic modulations with a single propagation vector. The power and efficiency of the formalism is illustrated with various selected examples, including some multiferroic materials
    corecore