7,505 research outputs found

    Payloads development for European land mobile satellites: A technical and economical assessment

    Get PDF
    The European Space Agency (ESA) has defined two payloads for Mobile Communication; one payload is for pre-operational use, the European Land Mobile System (EMS), and one payload is for promoting the development of technologies for future mobile communication systems, the L-band Land Mobile Payload (LLM). A summary of the two payloads and a description of their capabilities is provided. Additionally, an economic assessment of the potential mobile communication market in Europe is provided

    Winds as the origin of radio emission in z=2.5z=2.5 radio-quiet extremely red quasars

    Full text link
    Most active galactic nuclei (AGNs) are radio-quiet, and the origin of their radio emission is not well-understood. One hypothesis is that this radio emission is a by-product of quasar-driven winds. In this paper, we present the radio properties of 108 extremely red quasars (ERQs) at z=24z=2-4. ERQs are among the most luminous quasars (Lbol104748L_{bol} \sim 10^{47-48} erg/s) in the Universe, with signatures of extreme (1000\gg 1000 km/s) outflows in their [OIII]λ\lambda5007 \AA\ emission, making them the best subjects to seek the connection between radio and outflow activity. All ERQs but one are unresolved in the radio on 10\sim 10 kpc scales, and the median radio luminosity of ERQs is νLν[6GHz]=1041.0\nu L_\nu [{\rm 6\,GHz}] = 10^{41.0} erg/s, in the radio-quiet regime, but one to two orders of magnitude higher than that of other quasar samples. The radio spectra are steep, with a mean spectral index α=1.0\langle \alpha \rangle = -1.0. In addition, ERQs neatly follow the extrapolation of the low-redshift correlation between radio luminosity and the velocity dispersion of [OIII]-emitting ionized gas. Uncollimated winds, with a power of one per cent of the bolometric luminosity, can account for all these observations. Such winds would interact with and shock the gas around the quasar and in the host galaxy, resulting in acceleration of relativistic particles and the consequent synchrotron emission observed in the radio. Our observations support the picture in which ERQs are signposts of extremely powerful episodes of quasar feedback, and quasar-driven winds as a contributor of the radio emission in the intermediate regime of radio luminosity νLν=10391042\nu L_\nu = 10^{39}-10^{42} erg/s.Comment: accepted by MNRA

    Dark energy and dark matter from an inhomogeneous dilaton

    Full text link
    A cosmological scenario is proposed where the dark matter (DM) and dark energy (DE) of the universe are two simultaneous manifestations of an inhomogenous dilaton. The equation of state of the field is scale-dependent and pressureless at galactic and larger scales and it has negative pressure as a DE at very large scales. The dilaton drives an inflationary phase followed by a kinetic energy-dominated one, as in the "quintessential inflation" model introduced by Peebles & Vilenkin, and soon after the end of inflation particle production seeds the first inhomogeneities that lead to galaxy formation. The dilaton is trapped near the minimum of the potential where it oscillates like a massive field, and the excess of kinetic energy is dissipated via the mechanism of "gravitational cooling" first introduced by Seidel & Suen. The inhomogeneities therefore behave like solitonic oscillations around the minimum of the potential, known as "oscillatons", that we propose account for most DM in galaxies. Those regions where the dilaton does not transform enough kinetic energy into reheating or carry an excess of it from regions that have cooled, evolve to the tail of the potential as DE, driving the acceleration of the universe.Comment: 9 pages, 8 figures, uses revtex, submitted PR

    Intraocular pressure changes during femtosecond laser-assisted cataract surgery: A comparison between two different patient interfaces

    Get PDF
    Purpose. The aim of this retrospective cohort study was to evaluate intraocular pressure (IOP) changes during femtosecond laser-assisted cataract surgery (FLACS) using two different patient interface systems. Methods. 116 eyes of 116 patients scheduled for cataract surgery were divided into 2 groups: group 1 (61 eyes) and group 2 (55 eyes) underwent FLACS using Catalys Laser with fluid interface (liquid optics interface, LOI) and LenSx Laser with curved interface and soft contact lens (SoftFit), respectively. IOP was assessed using a portable rebound tonometer (Icare\uae) preoperatively, after docking, immediately after surgery, at one and seven days postoperatively. Results. In group 1, the mean IOP (\ub1SD) was 14.1 \ub1 0.4 mmHg before surgery, 33.2 \ub1 1.1 mmHg after docking, and 21.4 \ub1 0.9 mmHg immediately after surgery. In group 2, the mean IOP was 13.8 \ub1 0.4 mmHg before surgery, 24.2 \ub1 1.4 mmHg after docking, and 20.2 \ub1 1.2 mmHg immediately after surgery. After the docking procedure, a statistically significant increase in IOP from the baseline was found in both groups (p0.05) using both laser platforms. No intraoperative and postoperative complications were observed. Conclusions. FLACS suction phase resulted in a transient increase of IOP in both groups, especially with the LOI system, and it is probably related to the greater pressure of a suction ring and suction generated through the vacuum, independently from the effect of femtosecond laser itself

    Phase transition in Schwarzschild-de Sitter spacetime

    Full text link
    Using a static massive spherically symmetric scalar field coupled to gravity in the Schwarzschild-de Sitter (SdS) background, first we consider some asymptotic solutions near horizon and their local equations of state(E.O.S) on them. We show that near cosmological and event horizons our scalar field behaves as a dust. At the next step near two pure de-Sitter or Schwarzschild horizons we obtain a coupling dependent pressure to energy density ratio. In the case of a minimally couplling this ratio is -1 which springs to the mind thermodynamical behavior of dark energy. If having a negative pressure behavior near these horizons we concluded that the coupling constant must be ξ<1/4\xi<{1/4} >. Therefore we derive a new constraint on the value of our coupling ξ\xi . These two different behaviors of unique matter in the distinct regions of spacetime at present era can be interpreted as a phase transition from dark matter to dark energy in the cosmic scales and construct a unified scenario.Comment: 7 pages,no figures,RevTex, Typos corrected and references adde

    Biomechanically tunable nano-silica/p-hema structural hydrogels for bone scaffolding

    Get PDF
    Innovative tissue engineering biomimetic hydrogels based on hydrophilic polymers have been investigated for their physical and mechanical properties. 5% to 25% by volume loading PHEMA-nanosilica glassy hybrid samples were equilibrated at 37◦C in aqueous physiological isotonic and hypotonic saline solutions (0.15 and 0.05 M NaCl) simulating two limiting possible compositions of physiological extracellular fluids. The glassy and hydrated hybrid materials were characterized by both dynamo-mechanical properties and equilibrium absorptions in the two physiological-like aqueous solutions. The mechanical and morphological modifications occurring in the samples have been described. The 5% volume nanosilica loading hybrid nanocomposite composition showed mechanical characteristics in the dry and hydrated states that were comparable to those of cortical bone and articular cartilage, respectively, and then chosen for further sorption kinetics characterization. Sorption and swelling kinetics were monitored up to equilibrium. Changes in water activities and osmotic pressures in the water-hybrid systems equilibrated at the two limiting solute molarities of the physiological solutions have been related to the observed anomalous sorption modes using the Flory-Huggins interaction parameter approach. The bulk modulus of the dry and glassy PHEMA-5% nanosilica hybrid at 37◦C has been observed to be comparable with the values of the osmotic pressures generated from the sorption of isotonic and hypotonic solutions. The anomalous sorption modes and swelling rates are coherent with the difference between osmotic swelling pressures and hybrid glassy nano-composite bulk modulus: the lower the differences the higher the swelling rate and equilibrium solution uptakes. Bone tissue engineering benefits of the use of tuneable biomimetic scaffold biomaterials that can be “designed” to act as biocompatible and biomechanically active hybrid interfaces are discussed

    From structural colors to super-hydrophobicity and achromatic transparent protective coatings: Ion plating plasma assisted TiO2 and SiO2 nano-film deposition

    Get PDF
    The implementation of the Ion Plating Plasma Assisted technology in the area of surface functionalization for structural color and relic preservation applications is presented. Interferometric structural colors on irregular bumped Titanium surfaces and transparent and achromatic nano films on ancient ceramic artifact have been investigated. Titanium metal and ceramic supports have been utilized for the surface functionalization tests: A metallic electron beam additive manufactured Titanium component and an ancient tile of the XIX century, which was characterized by strong chromatic valence and by a mixed porous and glazed surfaces, have been considered. A reactive magnetron sputtering Ion Plating Plasma Assisted apparatus operating in Argon or Oxygen atmospheres for TiO2 and SiO2 deposition has been utilized. Preliminary tests with two plasma treatments were carried out for optimal processing conditions definition. TiO2 nano-film deposition on irregular Ti surfaces has generated light direction depending color-changing surfaces while good achromatic and transparent coatings were obtained by using SiO2 coating. The high processing flexibility of the Ion plating technology is discussed. The SiO2 IPPA surfaces treatment resulted more convenient for restorative and preservation ancient historical tile was used to finally test the optimized process with Ion Beam Electron Microscopy, which was carried out on the tile porous structure, confirmed the high flexibility and efficiency of the innovative IPPA technology

    Nature and statistical properties of quasar associated absorption systems in the XQ-100 Legacy Survey

    Get PDF
    We statistically study the physical properties of a sample of narrow absorption line (NAL) systems looking for empirical evidences to distinguish between intrinsic and intervening NALs without taking into account any a priori definition or velocity cut-off. We analyze the spectra of 100 quasars with 3.5 < zem\rm_{em} < 4.5, observed with X-shooter/VLT in the context of the XQ-100 Legacy Survey. We detect a \sim 8 σ\sigma excess in the number density of absorbers within 10,000 km/s of the quasar emission redshift with respect to the random occurrence of NALs. This excess does not show a dependence on the quasar bolometric luminosity and it is not due to the redshift evolution of NALs. It extends far beyond the standard 5000 km/s cut-off traditionally defined for associated absorption lines. We propose to modify this definition, extending the threshold to 10,000 km/s when also weak absorbers (equivalent width < 0.2 \AA) are considered. We infer NV is the ion that better traces the effects of the quasar ionization field, offering the best statistical tool to identify intrinsic systems. Following this criterion we estimate that the fraction of quasars in our sample hosting an intrinsic NAL system is 33 percent. Lastly, we compare the properties of the material along the quasar line of sight, derived from our sample, with results based on close quasar pairs investigating the transverse direction. We find a deficiency of cool gas (traced by CII) along the line of sight associated with the quasar host galaxy, in contrast with what is observed in the transverse direction.Comment: 18 pages, 13 figures, 5 table

    Constraining the dark energy dynamics with the cosmic microwave background bispectrum

    Full text link
    We consider the influence of the dark energy dynamics at the onset of cosmic acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole ll: we show that it is non-zero in a narrow interval centered at a redshift zz satisfying the relation l/r(z)kNL(z)l/r(z)\simeq k_{NL}(z), where the wavenumber corresponds to the scale entering the non-linear phase, and rr is the cosmological comoving distance. The relevant redshift interval is in the range 0.1\lsim z\lsim 2 for multipoles 1000\gsim\ell\gsim 100; the signal amplitude, reflecting the perturbation dynamics, is a function of the cosmological expansion rate at those epochs, probing the dark energy equation of state redshift dependence independently on its present value. We provide a worked example by considering tracking inverse power law and SUGRA Quintessence scenarios, having sensibly different redshift dynamics and respecting all the present observational constraints. For scenarios having the same present equation of state, we find that the effect described above induces a projection feature which makes the bispectra shifted by several tens of multipoles, about 10 times more than the corresponding effect on the ordinary CMB angular power spectrum.Comment: 15 pages, 7 figures, matching version accepted by Physical Review D, one figure improve
    corecore