132 research outputs found
User needs elicitation via analytic hierarchy process (AHP). A case study on a Computed Tomography (CT) scanner
Background:
The rigorous elicitation of user needs is a crucial step for both medical device design and purchasing. However, user needs elicitation is often based on qualitative methods whose findings can be difficult to integrate into medical decision-making. This paper describes the application of AHP to elicit user needs for a new CT scanner for use in a public hospital.
Methods:
AHP was used to design a hierarchy of 12 needs for a new CT scanner, grouped into 4 homogenous categories, and to prepare a paper questionnaire to investigate the relative priorities of these. The questionnaire was completed by 5 senior clinicians working in a variety of clinical specialisations and departments in the same Italian public hospital.
Results:
Although safety and performance were considered the most important issues, user needs changed according to clinical scenario. For elective surgery, the five most important needs were: spatial resolution, processing software, radiation dose, patient monitoring, and contrast medium. For emergency, the top five most important needs were: patient monitoring, radiation dose, contrast medium control, speed run, spatial resolution.
Conclusions:
AHP effectively supported user need elicitation, helping to develop an analytic and intelligible framework of decision-making. User needs varied according to working scenario (elective versus emergency medicine) more than clinical specialization. This method should be considered by practitioners involved in decisions about new medical technology, whether that be during device design or before deciding whether to allocate budgets for new medical devices according to clinical functions or according to hospital department
Olfactory lateralization in homing pigeons: a GPS study on birds released with unilateral olfactory inputs
A large body of evidence has shown that pigeons rely on an olfactory-based navigational map when homing from unfamiliar
locations. Previous studies on pigeons released with one nostril occluded highlighted an asymmetry in favour of the right nostril,
particularly concerning the initial orientation performance of naïve birds. Nevertheless, all pigeons experiencing only unilateral
olfactory input showed impaired homing, regardless of the side of the occluded nostril. So far this phenomenon has been
documented only by observing the birds’ vanishing bearings. In the present work we recorded the flight tracks of pigeons with
previous homing experience equipped with a GPS data logger and released from an unfamiliar location with the right or the left
nostril occluded. The analysis of the tracks revealed that the flight path of the birds with the right nostril occluded was more
tortuous than that of unmanipulated controls. Moreover, the pigeons smelling with the left nostril interrupted their journey
significantly more frequently and displayed more exploratory activity than the control birds, e.g. during flights around a stopover
site. These data suggest a more important involvement of the right olfactory system in processing the olfactory information
needed for the operation of the navigational map
Permittivity of oxidized ultra-thin silicon films from atomistic simulations
We establish the dependence of the permittivity of oxidized ultra-thin silicon films on the film thickness by means of atomistic simulations within the density-functional-based tight-binding theory (DFTB). This is of utmost importance for modeling ultra- and extremely-thin silicon-on-insulator MOSFETs, and for evaluating their scaling potential. We demonstrate that electronic contribution to the dielectric response naturally emerges from the DFTB Hamiltonian when coupled to Poisson equation solved in vacuum, without phenomenological parameters, and obtain good agreement with available experimental data. Comparison to calculations of H-passivated Si films reveals much weaker dependence of permittivity on film thickness for the SiO2-passivated Si, with less than 18% reduction in the case of 0.9 nm silicon-on-insulator.published_or_final_versio
Resonant electron heating and molecular phonon cooling in single C junctions
We study heating and heat dissipation of a single \c60 molecule in the
junction of a scanning tunneling microscope (STM) by measuring the electron
current required to thermally decompose the fullerene cage. The power for
decomposition varies with electron energy and reflects the molecular resonance
structure. When the STM tip contacts the fullerene the molecule can sustain
much larger currents. Transport simulations explain these effects by molecular
heating due to resonant electron-phonon coupling and molecular cooling by
vibrational decay into the tip upon contact formation.Comment: Accepted in Phys. Rev. Let
Stable Panoramic Views Facilitate Snap-Shot Like Memories for Spatial Reorientation in Homing Pigeons
Following spatial disorientation, animals can reorient themselves by relying on geometric cues (metric and sense) specified both by the macroscopic surface layout of an enclosed space and prominent visual landmarks in arrays. Whether spatial reorientation in arrays of landmarks is based on explicit representation of the geometric cues is a matter of debate. Here we trained homing pigeons (Columba livia) to locate a food-reward in a rectangular array of four identical or differently coloured pipes provided with four openings, only one of which allowed the birds to have access to the reward. Pigeons were trained either with a stable or a variable position of the opening on pipes, so that they could view the array either from the same or a variable perspective. Explicit mapping of configural geometry would predict successful reorientation irrespective of access condition. In contrast, we found that a stable view of the array facilitated spatial learning in homing pigeons, likely through the formation of snapshot-like memories
(210)Po poisoning as possible cause of death: forensic investigations and toxicological analysis of the remains of Yasser Arafat.
The late president of the Palestinian Authority, Yasser Arafat, died in November 2004 in Percy Hospital, one month after having experienced a sudden onset of symptoms that included severe nausea, vomiting, diarrhoea and abdominal pain and which were followed by multiple organ failure. In spite of numerous investigations performed in France, the pathophysiological mechanisms at the origin of the symptoms could not be identified. In 2011, we found abnormal levels of polonium-210 ((210)Po) in some of Arafat's belongings that were worn during his final hospital stay and which were stained with biological fluids. This finding led to the exhumation of Arafat's remains in 2012. Significantly higher (up to 20 times) activities of (210)Po and lead-210 ((210)Pb) were found in the ribs, iliac crest and sternum specimens compared to reference samples from the literature (p-value <1%). In all specimens from the tomb, (210)Po activity was supported by a similar activity of (210)Pb. Biokinetic calculations demonstrated that a (210)Pb impurity, as identified in a commercial source of 3MBq of (210)Po, may be responsible for the activities measured in Arafat's belongings and remains 8 years after his death. The absence of myelosuppression and hair loss in Mr Arafat's case compared to Mr Litvinenko's, the only known case of malicious poisoning with (210)Po, could be explained by differences in the time delivery-scheme of intake. In conclusion, statistical Bayesian analysis combining all the evidence gathered in our forensic expert report moderately supports the proposition that Mr Arafat was poisoned by (210)Po
Many-body current formula and current conservation for non-equilibrium fully interacting nanojunctions
We consider the electron transport properties through fully interacting
nanoscale junctions beyond the linear-response regime. We calculate the current
flowing through an interacting region connected to two interacting leads, with
interaction crossing at the left and right contacts, by using a non-equilibrium
Green's functions (NEGF) technique. The total current at one interface (the
left one for example) is made of several terms which can be regrouped into two
sets. The first set corresponds to a very generalised Landauer-like current
formula with physical quantities defined only in the interacting central region
and with renormalised lead self-energies. The second set characterises
inelastic scattering events occurring in the left lead. We show how this term
can be negligible or even vanish due to the pseudo-equilibrium statistical
properties of the lead in the thermodynamic limit. The expressions for the
different Green's functions needed for practical calculations of the current
are also provided. We determine the constraints imposed by the physical
condition of current conservation. The corresponding equation imposed on the
different self-energy quantities arising from the current conservation is
derived. We discuss in detail its physical interpretation and its relation with
previously derived expressions. Finally several important key features are
discussed in relation to the implementation of our formalism for calculations
of quantum transport in realistic systems
Evidence for Quantum Interference in SAMs of Arylethynylene Thiolates in Tunneling Junctions with Eutectic Ga-In (EGaIn) Top-Contacts
This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga2O3 as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10-1 A/cm2 at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 < |V| < 0.4 V. The calculations predict a higher value of I for AQ than for AH; however, the magnitude is highly dependent on the position of the Fermi energy, which cannot be calculated precisely. In this sense, the theoretical predictions and experimental conclusions agree that linearly conjugated AC is significantly more conductive than either cross-conjugated AQ or broken conjugate AH and that AQ and AH cannot necessarily be easily differentiated from each other. These observations are ascribed to quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green's function formalism
This article reviews the application of the non-equilibrium Green's function
formalism to the simulation of novel photovoltaic devices utilizing quantum
confinement effects in low dimensional absorber structures. It covers
well-known aspects of the fundamental NEGF theory for a system of interacting
electrons, photons and phonons with relevance for the simulation of
optoelectronic devices and introduces at the same time new approaches to the
theoretical description of the elementary processes of photovoltaic device
operation, such as photogeneration via coherent excitonic absorption,
phonon-mediated indirect optical transitions or non-radiative recombination via
defect states. While the description of the theoretical framework is kept as
general as possible, two specific prototypical quantum photovoltaic devices, a
single quantum well photodiode and a silicon-oxide based superlattice absorber,
are used to illustrated the kind of unique insight that numerical simulations
based on the theory are able to provide.Comment: 20 pages, 10 figures; invited review pape
- …