446 research outputs found

    First Report of CRISPR/Cas9 Gene Editing in Castanea sativa Mill

    Get PDF
    CRISPR/Cas9 has emerged as the most important tool for genome engineering due to its simplicity, design flexibility, and high efficiency. This technology makes it possible to induce point mutations in one or some target sequences simultaneously, as well as to introduce new genetic variants by homology-directed recombination. However, this approach remains largely unexplored in forest species. In this study, we reported the first example of CRISPR/Cas9-mediated gene editing in Castanea genus. As a proof of concept, we targeted the gene encoding phytoene desaturase (pds), whose mutation disrupts chlorophyll biosynthesis allowing for the visual assessment of knockout efficiency. Globular and early torpedo-stage somatic embryos of Castanea sativa (European chestnut) were cocultured for 5 days with a CRISPR/Cas9 construct targeting two conserved gene regions of pds and subsequently cultured on a selection medium with kanamycin. After 8 weeks of subculture on selection medium, four kanamycin-resistant embryogenetic lines were isolated. Genotyping of these lines through target Sanger sequencing of amplicons revealed successful gene editing. Cotyledonary somatic embryos were maturated on maltose 3% and cold-stored at 4°C for 2 months. Subsequently, embryos were subjected to the germination process to produce albino plants. This study opens the way to the use of the CRISPR/Cas9 system in European chestnut for biotechnological application

    Opicapone in UK clinical practice: effectiveness, safety and cost analysis in patients with Parkinson's disease.

    Get PDF
    Aim: This subanalysis of the OPTIPARK study aimed to confirm the effectiveness and safety of opicapone in patients with Parkinson's disease and motor fluctuations in clinical practice specifically in the UK and to assess the impact of opicapone on treatment costs. Methods: Patients received opicapone added to levodopa for 6 months. Clinical outcomes were assessed at 3 and 6 months and treatment costs at 6 months. Results: Most patients' general condition improved at 3 months, with sustained improvements reported at 6 months. Opicapone improved motor and non-motor symptoms at both timepoints, was generally well tolerated and reduced total treatment costs by GBP 3719. Conclusion: Opicapone added to levodopa resulted in clinical improvements and reduced treatment costs across UK clinical practice

    Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H2O rotational band from 240 to 590 cm −1

    Get PDF
    The paper presents a novel methodology to retrieve the foreign-broadened water vapor continuum absorption coefficients in the spectral range 240 to 590 cm−1 and is the first estimation of the continuum coefficient at wave numbers smaller than 400 cm−1 under atmospheric conditions. The derivation has been accomplished by processing a suitable set of atmospheric emitted spectral radiance observations obtained during the March 2007 Alps campaign of the ECOWAR project (Earth COoling by WAter vapor Radiation). It is shown that, in the range 450 to 600 cm−1, our findings are in good agreement with the widely used Mlawer, Tobin-Clough, Kneizys-Davies (MT_CKD) continuum. Below 450 cm−1 however the MT_CKD model overestimates the magnitude of the continuum coefficient.Published15816-158331.8. Osservazioni di geofisica ambientaleJCR Journalreserve

    Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band

    Get PDF
    This paper presents the project Earth Cooling by Water Vapor Radiation, an observational programme, which aims at developing a database of spectrally resolved far infrared observations, in atmospheric dry conditions, in order to validate radiative transfer models and test the quality of water vapor continuum and line parameters. The project provides the very first set of far-infrared spectral downwelling radiance measurements, in dry atmospheric conditions, which are complemented with Raman Lidar-derived temperature and water vapor profiles

    Entropy of Molecular Binding at Solvated Mineral Surfaces

    Get PDF
    We present thermodynamic integration simulations for the binding of mannose and methanoic acid onto the {10.4} calcite surface producing free energy of binding values of −2.89 and −1.64 kJ mol–1, respectively. We extract the entropy of binding from vacuum-based simulations and use these values to determine the entropy of binding for surface water molecules which is ∼6 J mol–1 K–1

    Modal Virtue Epistemology

    Get PDF
    10.1111/phpr.12562Philosophy and Phenomenological Researc

    Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts

    Get PDF
    A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts
    corecore