329 research outputs found

    Indexed debt contracts and the financial accelerator

    Get PDF
    This paper addresses the positive and normative implications of indexing risky debt to observable aggregate conditions. These issues are pursued within the context of the celebrated financial accelerator model of Bernanke, Gertler and Gilchrist (1999). The principal conclusions are that the optimal degree of indexation is significant, and that the business cycle properties of the model are altered under this level of indexation.Indexation (Economics) ; Financial markets

    ECONOMICS OF AGRICULTURAL SOIL CARBON SEQUESTRATION IN THE NORTHERN PLAINS

    Get PDF
    Under the Kyoto protocol of the United Nations Framework Convention on Climate Change the United States is charged with reducing emissions of greenhouse gases to seven percent below their 1990 levels by the period 2008-2012. These reductions could be met from many industries including agriculture. In this paper, an economic simulation model is linked to an ecosystem model to quantify the economic efficiency of policies that might be used to sequester carbon (C) in agricultural soils in the Northern Plains region. Simulations with the Century ecosystem model show that long-term soil C levels associated with a crop/fallow system are less than those for grass alone, but that soil C levels for grass-clover-pasture are greater than for continuously cropped grains. The analysis shows that a CRP-style policy is found to be an inefficient means to increase soil C because the per acre payments to convert crop-land to grass-only draw land from both the crop/fallow system and the continuous cropping system, and costs typically exceed 100perMT(metricton)ofC.Incontrast,paymentstoadoptcontinuouscroppingwerefoundtoproduceincreasesinsoilCforbetween100 per MT (metric ton) of C. In contrast, payments to adopt continuous cropping were found to produce increases in soil C for between 5 to $70 depending on area and degree of targeting of the payments. The most efficient, lowest cost policy is achieved when payments are targeted to land that was previously in a crop/fallow rotation. In this range, soil C sequestration appears to be competitive with C sequestered from other sources.policy design, economic efficiency, soil carbon, sequestration, valuing soil carbon, Great Plains agriculture, Resource /Energy Economics and Policy, Q2,

    ECONOMICS OF AGRICULTURAL SOIL CARBON SEQUESTRATION IN THE NORTHERN GREAT PLAINS

    Get PDF
    Under the Kyoto protocol of the United Nations Framework Convention on Climate Change the United States is charged with reducing emissions of greenhouse gases to seven percent below their 1990 levels by the period 2008-2012. These reductions could be met from many industries including agriculture. In this paper, an economic simulation model is linked to the CENTURY ecosystem model to quantify the economic efficiency of policies that might be used to sequester carbon (C) in agricultural soils in the Northern Great Plains region. Model outputs are combined to assess the costs of inducing changes in equilibrium levels of soil C through three types of policies. The first is a CRP-style policy that provides producers with per-acre payments for converting crop-land to permanent grass; the second is a policy that provides per-acre payments to all farmers that use continuous cropping, regardless of the land's cropping history; the third is a policy that provides per-acre payments for the use of continuous cropping only on land units that had previously been in a crop/fallow rotation. The analysis shows that a CRP-style policy is found to be an inefficient means to increase soil C resulting in costs that typically exceed 100perMT(metricton)ofC.Incontrast,paymentstoadoptcontinuouscroppingwerefoundtoproduceincreasesinsoilCforbetween100 per MT (metric ton) of C. In contrast, payments to adopt continuous cropping were found to produce increases in soil C for between 5 to $70/MT depending on the geographic area and degree of targeting of the payments. The most efficient, lowest cost policy is achieved when payments are targeted to land that was previously in a crop/fallow rotation. In this range, soil C sequestration appears to be competitive with C sequestered from other sources.policy design, economic efficiency, soil carbon, sequestration, valuing soil carbon, Great Plains agriculture, Environmental Economics and Policy, Q2,

    Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands

    Get PDF
    Croplands are man-made ecosystems that have high net primary productivity during the growing season of crops, thus impacting carbon and other exchanges with the atmosphere. These exchanges play a major role in nutrient cycling and climate change related issues. An accurate representation of crop phenology and physiology is important in land-atmosphere carbon models being used to predict these exchanges. To better estimate time-varying exchanges of carbon, water, and energy of croplands using the Simple Biosphere (SiB) model, we developed crop-specific phenology models and coupled them to SiB. The coupled SiB-phenology model (SiBcrop) replaces remotely-sensed NDVI information, on which SiB originally relied for deriving Leaf Area Index (LAI) and the fraction of Photosynthetically Active Radiation (fPAR) for estimating carbon dynamics. The use of the new phenology scheme within SiB substantially improved the prediction of LAI and carbon fluxes for maize, soybean, and wheat crops, as compared with the observed data at several AmeriFlux eddy covariance flux tower sites in the US mid continent region. SiBcrop better predicted the onset and end of the growing season, harvest, interannual variability associated with crop rotation, day time carbon uptake (especially for maize) and day to day variability in carbon exchange. Biomass predicted by SiBcrop had good agreement with the observed biomass at field sites. In the future, we will predict fine resolution regional scale carbon and other exchanges by coupling SiBcrop with RAMS (the Regional Atmospheric Modeling System)

    Agricultural climate change mitigation : Carbon calculators as a guide for decision making

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in International Journal of Agricultural Sustainability on 9 November 2017, available online: https://doi.org/10.1080/14735903.2017.1398628. Under embargo. Embargo end date: 9 November 2018.The dairy industry is receiving considerable attention in relation to both its significant greenhouse gas (GHG) emissions, and it’s potential for reducing those emissions, contributing towards meeting national targets and driving the industry towards sustainable intensification. However, the extent to which improvements can be made is dependent on the decision making processes of individual producers, so there has been a proliferation of carbon accounting tools seeking to influence those processes. This paper evaluates the suitability of such tools for driving environmental change by influencing on-farm management decisions. Seven tools suitable for the European dairy industry were identified, their characteristics evaluated, and used to process data relating to six scenario farms, emulating process undertaken in real farm management situations. As a result of the range of approaches taken by the tools, there was limited agreement between them as to GHG emissions magnitude, and no consistent pattern as to which tools resulted in the highest/lowest results. Despite this it is argued, that as there was agreement as to the farm activities responsible for the greatest emissions, the more complex tools were still capable of performing a ‘decision support’ role, and guiding management decisions, whilst others could merely focus attention on key issues.Peer reviewe

    Clinicopathological Profile and Surgical Treatment of Abdominal Tuberculosis: A Single Centre Experience in Northwestern Tanzania.

    Get PDF
    Abdominal tuberculosis continues to be a major public health problem worldwide and poses diagnostic and therapeutic challenges to general surgeons practicing in resource-limited countries. This study was conducted to describe the clinicopathological profile and outcome of surgical treatment of abdominal tuberculosis in our setting and compare with what is described in literature. A prospective descriptive study of patients who presented with abdominal tuberculosis was conducted at Bugando Medical Centre (BMC) in northwestern Tanzania from January 2006 to February 2012. Ethical approval to conduct the study was obtained from relevant authorities. Statistical data analysis was performed using SPSS version 17.0. Out of 256 patients enrolled in the study, males outnumbered females. The median age was 28 years (range = 16-68 years). The majority of patients (77.3%) had primary abdominal tuberculosis. A total of 127 (49.6%) patients presented with intestinal obstruction, 106 (41.4%) with peritonitis, 17 (6.6%) with abdominal masses and 6 (2.3%) patients with multiple fistulae in ano. Forty-eight (18.8%) patients were HIV positive. A total of 212 (82.8%) patients underwent surgical treatment for abdominal tuberculosis. Bands /adhesions (58.5%) were the most common operative findings. Ileo-caecal region was the most common bowel involved in 122 (57.5%) patients. Release of adhesions and bands was the most frequent surgical procedure performed in 58.5% of cases. Complication and mortality rates were 29.7% and 18.8% respectively. The overall median length of hospital stay was 32 days and was significantly longer in patients with complications (p < 0.001). Advanced age (age ≥ 65 years), co-morbid illness, late presentation, HIV positivity and CD4+ count < 200 cells/μl were statistically significantly associated with mortality (p < 0.0001). The follow up of patients were generally poor as only 37.5% of patients were available for follow up at twelve months after discharge. Abdominal tuberculosis constitutes a major public health problem in our environment and presents a diagnostic challenge requiring a high index of clinical suspicion. Early diagnosis, early anti-tuberculous therapy and surgical treatment of the associated complications are essential for survival

    Long-term ecological research on Colorado Shortgrass Steppe

    Get PDF
    The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Poster presented at the LTER All Scientists Meeting held in Estes Park, CO on September 10-13, 2012

    Isotopic and molecular distributions of biochemicals from fresh and buried Rhizophora mangle leaves†

    Get PDF
    Rhizophora mangle L. (red mangrove) is the dominant species of mangrove in the Americas. At Twin Cays, Belize (BZ) red mangroves are present in a variety of stand structures (tall >5 m in height, transition ~2–4 m and dwarf ~1–1.5 m). These height differences are coupled with very different stable carbon and nitrogen isotopic values[1] (mean tall δ(13)C = -28.3‰, δ(15)N = 0‰; mean tall δ(13)C = -25.3‰, δ(15)N = -10‰). To determine the utility of using these distinct isotopic compositions as 'biomarkers' for paleoenvironmental reconstruction of mangrove ecosystems and nutrient availability, we investigated the distribution and isotopic (δ(13)C and δ(15)N) composition of different biochemical fractions (water soluble compounds, free lipids, acid hydrolysable compounds, individual amino acids, and the residual un-extractable compounds) in fresh and preserved red mangrove leaves from dwarf and tall trees. The distribution of biochemicals are similar in dwarf and tall red mangrove leaves, suggesting that, regardless of stand structure, red mangroves use nutrients for biosynthesis and metabolism in a similar manner. However, the δ(13)C and δ(15)N of the bulk leaf, the biochemical fractions, and seven amino acids can be used to distinguish dwarf and tall trees at Twin Cays, BZ. The data support the theory that the fractionation of carbon and nitrogen occurs prior to or during uptake in dwarf and tall red mangrove trees. Stable carbon and nitrogen isotopes could, therefore, be powerful tools for predicting levels of nutrient limitation at Twin Cays. The δ(13)C and δ(15)N of biochemical fractions within preserved leaves, reflect sedimentary cycling and nitrogen immobilization. The δ(15)N of the immobilized fraction reveals the overlying stand structure at the time of leaf deposition. The isotopic composition of preserved mangrove leaves could yield significant information about changes in ecosystem dynamics, nutrient limitation and past stand structure in mangrove paleoecosystems
    corecore