7,270 research outputs found

    Gamma-rays from massive protostars

    Get PDF
    Massive protostars have associated bipolar outflows with velocities of hundreds of km/s. Such outflows produce strong shocks when interact with the ambient medium leading to regions of non-thermal radio emission. Under certain conditions, the population of relativistic particles accelerated at the terminal shocks of the protostellar jets can produce significant gamma-ray emission. We estimate the conditions necessary for high-energy emission in the non-thermal hot spots of jets associated with massive protostars embedded in dense molecular clouds. Our results show that particle-matter interactions can lead to the detection of molecular clouds hosting massive young stellar objects by the Fermi satellite at MeV-GeV energies and even by Cherenkov telescope arrays in the GeV-TeV range. Astronomy at gamma-rays can be used to probe the physical conditions in star forming regions and particle acceleration processes in the complex environment of massive molecular clouds.Comment: Proceeding of the conference "High Energy Phenomena in Massive Stars". Jaen (Spain), 2-5 February 200

    Pairing, crystallization and string correlations of mass-imbalanced atomic mixtures in one-dimensional optical lattices

    Full text link
    We numerically determine the very rich phase diagram of mass-imbalanced binary mixtures of hardcore bosons (or equivalently -- fermions, or hardcore-Bose/Fermi mixtures) loaded in one-dimensional optical lattices. Focusing on commensurate fillings away from half filling, we find a strong asymmetry between attractive and repulsive interactions. Attraction is found to always lead to pairing, associated with a spin gap, and to pair crystallization for very strong mass imbalance. In the repulsive case the two atomic components remain instead fully gapless over a large parameter range; only a very strong mass imbalance leads to the opening of a spin gap. The spin-gap phase is the precursor of a crystalline phase occurring for an even stronger mass imbalance. The fundamental asymmetry of the phase diagram is at odds with recent theoretical predictions, and can be tested directly via time-of-flight experiments on trapped cold atoms.Comment: 4 pages, 4 figures + Supplementary Materia

    Pfaffian-like ground state for 3-body-hard-core bosons in 1D lattices

    Full text link
    We propose a Pfaffian-like Ansatz for the ground state of bosons subject to 3-body infinite repulsive interactions in a 1D lattice. Our Ansatz consists of the symmetrization over all possible ways of distributing the particles in two identical Tonks-Girardeau gases. We support the quality of our Ansatz with numerical calculations and propose an experimental scheme based on mixtures of bosonic atoms and molecules in 1D optical lattices in which this Pfaffian-like state could be realized. Our findings may open the way for the creation of non-abelian anyons in 1D systems

    Observation of the Meissner effect with ultracold atoms in bosonic ladders

    Full text link
    We report on the observation of the Meissner effect in bosonic flux ladders of ultracold atoms. Using artificial gauge fields induced by laser-assisted tunneling, we realize arrays of decoupled ladder systems that are exposed to a uniform magnetic field. By suddenly decoupling the ladders and projecting into isolated double wells, we are able to measure the currents on each side of the ladder. For large coupling strengths along the rungs of the ladder, we find a saturated maximum chiral current corresponding to a full screening of the artificial magnetic field. For lower coupling strengths, the chiral current decreases in good agreement with expectations of a vortex lattice phase. Our work marks the first realization of a low-dimensional Meissner effect and, furthermore, it opens the path to exploring interacting particles in low dimensions exposed to a uniform magnetic field

    The economics of multisystemic resilience

    Get PDF
    The concept of resilience in the economic literature is centered around the capacity to overcome adverse circumstances and to mitigate the impacts of shocks through the development of human capital starting in early childhood. In this chapter, the authors review the existing evidence on multisystemic resilience in economics, from both a micro- and a macroperspective. To do so, they first introduce the theory of human capital development and the large body of empirical evidence about early interventions that seek to boost resilience in children. They then discuss two more recent strands of literature: one that examines whether subsequent investments can offset the effects of early-life shocks and another that uses micro-founded macroeconomic models to understand the indirect (multisystemic) effects of early interventions

    Predicting Future Instance Segmentation by Forecasting Convolutional Features

    Get PDF
    Anticipating future events is an important prerequisite towards intelligent behavior. Video forecasting has been studied as a proxy task towards this goal. Recent work has shown that to predict semantic segmentation of future frames, forecasting at the semantic level is more effective than forecasting RGB frames and then segmenting these. In this paper we consider the more challenging problem of future instance segmentation, which additionally segments out individual objects. To deal with a varying number of output labels per image, we develop a predictive model in the space of fixed-sized convolutional features of the Mask R-CNN instance segmentation model. We apply the "detection head'" of Mask R-CNN on the predicted features to produce the instance segmentation of future frames. Experiments show that this approach significantly improves over strong baselines based on optical flow and repurposed instance segmentation architectures
    • …
    corecore