171 research outputs found

    Single Superconducting Split-Ring Resonator Electrodynamics

    Full text link
    We investigate the microwave electrodynamic properties of a single superconducting thin film split-ring resonator (SRR). The experiments were performed in an all-Nb waveguide, with Nb wires and Nb SRRs. Transmission data showed a high-Q stopband for a single Nb SRR (Q∼4.5×104Q \sim 4.5\times10^4 at 4.2 K) below TcT_c, and no such feature for a Cu SRR, or closed Nb loops, of similar dimensions. Adding SRRs increased the bandwidth, but decreased the insertion loss of the features. Placing the Nb SRR into an array of wires produced a single, elementary negative-index passband (Q∼2.26×104Q \sim 2.26\times10^4 at 4.2 K). Changes in the features due to the superconducting kinetic inductance were observed. Models for the SRR permeability, and the wire dielectric response, were used to fit the data.Comment: 4 pages, 3 figures, RevTex, submitted to Applied Physics Letters. Updated version includes mention of bianisotropy, better looking figures, and different temperature dat

    Strong Electron-Phonon Coupling in Superconducting MgB2_2: A Specific Heat Study

    Full text link
    We report on measurements of the specific heat of the recently discovered superconductor MgB2_2 in the temperature range between 3 and 220 K. Based on a modified Debye-Einstein model, we have achieved a rather accurate account of the lattice contribution to the specific heat, which allows us to separate the electronic contribution from the total measured specific heat. From our result for the electronic specific heat, we estimate the electron-phonon coupling constant λ\lambda to be of the order of 2, significantly enhanced compared to common weak-coupling values ≤0.4\leq 0.4. Our data also indicate that the electronic specific heat in the superconducting state of MgB2_2 can be accounted for by a conventional, s-wave type BCS-model.Comment: 4 pages, 4 figure

    Tunable coaxial cavity resonator for linear and nonlinear microwave characterization of superconducting wires

    Get PDF
    We discuss experimental results obtained using a tunable cylindrical coaxial cavity constituted by an outer Cu cylinder and an inner Pb-BSCCO wire. We have used this device for investigating the microwave response of the superconducting wire, both in the linear and nonlinear regimes. In particular, by tuning the different modes of the cavity to make them resonant at exactly harmonic frequencies, we have detected the power emitted by the superconducting inner wire at the second- and third-harmonic frequency of the driving field. The results obtained in the nonlinear regime, whether for the microwave surface impedance or the harmonic emission, are qualitatively accounted for considering intergrain fluxon dynamics. The use of this kind of device can be of strong interest to investigate and characterise wires of large dimensions to be used for implementing superconducting-based microwave devices.Comment: 14 pages, 6 embedded figures, accepted for publication in Supercond. Sci. Techno

    Superconducting Microwave Cavity Made of Bulk MgB2

    Full text link
    We report the successful manufacture and characterization of a microwave resonant cylindrical cavity made of bulk MgB2 superconductor (Tc = 38.5 K), which has been produced by the Reactive Liquid Mg Infiltration technique. The quality factor of the cavity for the TE011 mode, resonating at 9.79 GHz, has been measured as a function of the temperature. At T = 4.2 K, the unloaded quality factor is 2.2x10^5; it remains of the order of 10^5 up to T ~ 30 K. We discuss the potential performance improvements of microwave cavities built from bulk MgB2 materials produced by reactive liquid Mg infiltration.Comment: 7 pages, 2 embedded figures, accepted for publication in Supercond. Sci. Techno

    Observation of a Chiral State in a Microwave Cavity

    Full text link
    A microwave experiment has been realized to measure the phase difference of the oscillating electric field at two points inside the cavity. The technique has been applied to a dissipative resonator which exhibits a singularity -- called exceptional point -- in its eigenvalue and eigenvector spectrum. At the singularity, two modes coalesce with a phase difference of π/2.\pi/2 . We conclude that the state excited at the singularity has a definitiv chirality.Comment: RevTex 4, 5 figure
    • …
    corecore