3,382 research outputs found

    Cosmic Ray Acceleration at Relativistic Shock Waves with a "Realistic" Magnetic Field Structure

    Full text link
    The process of cosmic ray first-order Fermi acceleration at relativistic shock waves is studied with the method of Monte Carlo simulations. The simulations are based on numerical integration of particle equations of motion in a turbulent magnetic field near the shock. In comparison to earlier studies, a few "realistic" features of the magnetic field structure are included. The upstream field consists of a mean field component inclined at some angle to the shock normal with finite-amplitude sinusoidal perturbations imposed upon it. The perturbations are assumed to be static in the local plasma rest frame. Their flat or Kolmogorov spectra are constructed with randomly drawn wave vectors from a wide range (kmin,kmax)(k_{min}, k_{max}). The downstream field structure is derived from the upstream one as compressed at the shock. We present particle spectra and angular distributions obtained at mildly relativistic sub- and superluminal shocks and also parallel shocks. We show that particle spectra diverge from a simple power-law, the exact shape of the spectrum depends on both the amplitude of the magnetic field perturbations and the wave power spectrum. Features such as spectrum hardening before the cut-off at oblique subluminal shocks and formation of power-law tails at superluminal ones are presented and discussed. At parallel shocks, the presence of finite-amplitude magnetic field perturbations leads to the formation of locally oblique field configurations at the shock and the respective magnetic field compressions. This results in the modification of the particle acceleration process, introducing some features present in oblique shocks, e.g., particle reflections from the shock. We demonstrate for parallel shocks a (nonmonotonic) variation of the particle spectral index with the turbulence amplitude.Comment: revised version (37 pages, 13 figures

    Cosmic-ray Acceleration at Ultrarelativistic Shock Waves: Effects of a "Realistic" Magnetic Field Structure

    Full text link
    First-order Fermi acceleration processes at ultrarelativistic shocks are studied with Monte Carlo simulations. The accelerated particle spectra are derived by integrating the exact particle trajectories in a turbulent magnetic field near the shock. ''Realistic'' features of the field structure are included. We show that the main acceleration process at superluminal shocks is the particle compression at the shock. Formation of energetic spectral tails is possible in a limited energy range only for highly perturbed magnetic fields, with cutoffs occuring at low energies within the resonance energy range considered. These spectral features result from the anisotropic character of particle transport in the downstream magnetic field, where field compression produces effectively 2D perturbations. Because of the downstream field compression, the acceleration process is inefficient in parallel shocks for larger turbulence amplitudes, and features observed in oblique shocks are recovered. For small-amplitude turbulence, wide-energy range particle spectra are formed and modifications of the process due to the existence of long-wave perturbations are observed. In both sub- and superluminal shocks, an increase of \gamma leads to steeper spectra with lower cut-off energies. The spectra obtained for the ``realistic'' background conditions assumed here do not converge to the ``universal'' spectral index claimed in the literature. Thus the role of the first-order Fermi process in astrophysical sources hosting relativistic shocks requires serious reanalysis.Comment: submitted to Ap

    A Novel Approach in Constraining Electron Spectra in Blazar Jets: The Case of Markarian 421

    Full text link
    We report results from the observations of the well studied TeV blazar Mrk 421 with the Swift and the Suzaku satellites in December 2008. During the observation, Mrk 421 was found in a relatively low activity state, with the corresponding 2-10 keV flux of 3×10103 \times 10^{-10} erg/s/cm^2. For the purpose of robust constraining the UV-to-X-ray emission continuum we selected only the data corresponding to truly simultaneous time intervals between Swift and Suzaku, allowing us to obtain a good-quality, broad-band spectrum despite a modest length (0.6 ksec) exposure. We analyzed the spectrum with the parametric forward-fitting SYNCHROTRON model implemented in XSPEC assuming two different representations of the underlying electron energy distribution, both well motivated by the current particle acceleration models: a power-law distribution above the minimum energy γmin\gamma_{\rm min} with an exponential cutoff at the maximum energy γmax\gamma_{\rm max}, and a modified ultra-relativistic Maxwellian with an equilibrium energy γeq\gamma_{\rm eq}. We found that the latter implies unlikely physical conditions within the blazar zone of Mrk 421. On the other hand, the exponentially moderated power-law electron distribution gives two possible sets of the model parameters: (i) flat spectrum dNe/dγγ1.91dN'_e/d\gamma \propto \gamma^{-1.91} with low minimum electron energy γmin<103\gamma_{\rm min}<10^3, and (ii) steep spectrum γ2.77\propto \gamma^{-2.77} with high minimum electron energy γmin2×104\gamma_{\rm min}\simeq 2\times10^4. We discuss different interpretations of both possibilities in the context of a diffusive acceleration of electrons at relativistic, sub- or superluminal shocks. We also comment on how exactly the gamma-ray data can be used to discriminate between the proposed different scenarios.Comment: 18 pages, 2 figures; accepted for publication in the Astrophysical Journa

    Drift routes of Cape hake eggs and larvae in the southern Benguela Current system

    Get PDF
    The aim of this study was to combine observed circulation pattern with data on distribution of hake eggs and larvae in the southern Benguela from a survey in September/October 2005 to investigate drift routes of hake eggs and larvae. Genetic information enabled species-specific information about drift routes of the two hake species (Merluccius capensis and M. paradoxus) to be established. The results showed that both species were transported from spawning areas to nursery areas in the jet current, but differential cross-shelf distribution would most likely lead to species-specific drift routes which could explain why the two species seem to have different nursery areas

    PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus

    Get PDF
    Previous microarray analyses have shown a key role for the two-component system PhoBR (SYNW0947, SYNW0948) in the regulation of P transport and metabolism in the marine cyanobacterium Synechococcus sp. WH8102. However, there is some evidence that another regulator, SYNW1019 (PtrA), probably under the control of PhoBR, is involved in the response to P depletion. PtrA is a member of the cAMP receptor protein transcriptional regulator family that shows homology to NtcA, the global nitrogen regulator in cyanobacteria. To define the role of this regulator, we constructed a mutant by insertional inactivation and compared the physiology of wild-type Synechcococcus sp. WH8102 with the ptrA mutant under P-replete and P-stress conditions. In response to P stress the ptrA mutant failed to upregulate phosphatase activity. Microarrays and quantitative RT-PCR indicate that a subset of the Pho regulon is controlled by PtrA, including two phosphatases, a predicted phytase and a gene of unknown function psip1 (SYNW0165), all of which are highly upregulated during P limitation. Electrophoretic mobility shift assays indicate binding of overexpressed PtrA to promoter sequences upstream of the induced genes. This work suggests a two-tiered response to P depletion in this strain, the first being PhoB-dependent induction of high-affinity PO4 transporters, and the second the PtrA-dependent induction of phosphatases for scavenging organic P. The levels of numerous other transcripts are also directly or indirectly influenced by PtrA, including those involved in cell-surface modification, metal uptake, photosynthesis, stress responses and other metabolic processes, which may indicate a wider role for PtrA in cellular regulation in marine picocyanobacteria

    Maximum Likelihood Estimation in Gaussian Chain Graph Models under the Alternative Markov Property

    Full text link
    The AMP Markov property is a recently proposed alternative Markov property for chain graphs. In the case of continuous variables with a joint multivariate Gaussian distribution, it is the AMP rather than the earlier introduced LWF Markov property that is coherent with data-generation by natural block-recursive regressions. In this paper, we show that maximum likelihood estimates in Gaussian AMP chain graph models can be obtained by combining generalized least squares and iterative proportional fitting to an iterative algorithm. In an appendix, we give useful convergence results for iterative partial maximization algorithms that apply in particular to the described algorithm.Comment: 15 pages, article will appear in Scandinavian Journal of Statistic

    Infusion of donor leukocytes to induce tolerance in organ allograft recipients

    Get PDF
    To further enhance chimerism, 229 primary allograft recipients have received perioperative intravenous infusion of a single dose of 3 to 6 x 108 unmodified donor bone marrow (BM) cells/kg body weight. In addition, 42 patients have been accrued in a concurrent protocol involving multiple (up to three) sequential perioperative infusions of 2 x 108 BM cells/kg/day from day 0-2 posttransplantation (PTx). Organ recipients (n = 133) for whom BM was not available were monitored as controls. The infusion of BM was safe and except for 50 (18%), all study patients have optimal graft function. Of the control patients, allografts in 30 (23%) have been lost during the course of follow-up. The cumulative risk of acute cellular rejection (ACR) was statistically lower in the study patients compared with that of controls. It is interesting that, 62% of BM-augmented heart recipients were free of ACR (Grade ≥ 3A) in the first 6 months PTx compared to controls. The incidence of obliterative bronchiolitis was also statistically lower in study lung recipients (3.8%) compared with the contemporaneously acquired controls (31%). The levels of donor cell chimerism were at least a log higher in the peripheral blood of majority of the study patients compared with that of controls. The incidence of donor-specific hyporeactivity, as determined by one-way mixed leukocyte reaction, was also higher in those BM-augmented liver, kidney, and lung recipients that could be evaluated compared to controls

    Subresultants in multiple roots: an extremal case

    Get PDF
    We provide explicit formulae for the coefficients of the order-d polynomial subresultant of (x-\alpha)^m and (x-\beta)^n with respect to the set of Bernstein polynomials \{(x-\alpha)^j(x-\beta)^{d-j}, \, 0\le j\le d\}. They are given by hypergeometric expressions arising from determinants of binomial Hankel matrices.Comment: 18 pages, uses elsart. Revised version accepted for publication at Linear Algebra and its Application

    Particle-unstable nuclei in the Hartree-Fock theory

    Get PDF
    Ground state energies and decay widths of particle unstable nuclei are calculated within the Hartree-Fock approximation by performing a complex scaling of the many-body Hamiltonian. Through this transformation, the wave functions of the resonant states become square integrable. The method is implemented with Skyrme effective interactions. Several Skyrme parametrizations are tested on four unstable nuclei: 10He, 12O, 26O and 28O.Comment: 5 pages, LaTeX, submitted to Phys. Rev. Let
    corecore