718 research outputs found

    Heavy ion beam lifetimes at relativistic and ultrarelativistic colliders

    Get PDF
    The effects of higher order corrections in ultra-relativistic nuclear collisions are considered. It is found that higher order contributions are small at low energy, large at intermediate energy and small again at very high energy. An explanation for this effect is given. This means that the Weizsacker-Williams formula is a good approximation to use in calculating cross sections and beam lifetimes at energies relevant to RHIC and LHC.Comment: 10 pages, 2 tables, 4 figure

    The Nystrom plus Correction Method for Solving Bound State Equations in Momentum Space

    Get PDF
    A new method is presented for solving the momentum-space Schrodinger equation with a linear potential. The Lande-subtracted momentum space integral equation can be transformed into a matrix equation by the Nystrom method. The method produces only approximate eigenvalues in the cases of singular potentials such as the linear potential. The eigenvalues generated by the Nystrom method can be improved by calculating the numerical errors and adding the appropriate corrections. The end results are more accurate eigenvalues than those generated by the basis function method. The method is also shown to work for a relativistic equation such as the Thompson equation.Comment: Revtex, 21 pages, 4 tables, to be published in Physical Review

    Evaluation of an interview skills training package for adolescents with speech, language and communication needs

    Get PDF
    BACKGROUND & AIMS: We evaluated a structured intervention programme aimed at preparing adolescents with developmental language disorders for job interviews. Our primary outcome measures included change in ratings of verbal and non‐verbal social communication behaviours evident during mock interviews. METHODS & PROCEDURES: In study 1, 12 participants, aged 17–19 years, from a specialist sixth‐form college completed the intervention and two mock interviews, one pre‐ and one post‐intervention. In study 2, 34 participants, aged 17–19 years, completed a modified intervention programme and three mock interviews, one at baseline (included to control for possible practise effects), one pre‐ and one post‐intervention. In both studies, interviews were video recorded and social communication behaviours were coded by independent assessors blind to interview time, participant diagnosis and therapy content. A repeated‐measures design was employed to measure change in communication behaviours. OUTCOMES & RESULTS: In study 1, a significant increase in the number of ‘positive’ verbal and non‐verbal social communication behaviours was observed from pre‐ to post‐intervention. However, there was no significant change in the number of ‘negative’ behaviours (i.e., fidgeting, irrelevant remarks). In study 2, there were no significant changes in verbal behaviours, but significant group differences (though wide individual variation) in both positive and negative non‐verbal social communication behaviours. CONCLUSIONS & IMPLICATIONS: Our findings suggest that training specific social communication skills that are important for interview success, and consistently reinforcing those behaviours during therapy practice, can increase the use of those skills in an interview setting, though in this heterogeneous population there was considerable variation in therapy outcome. The skills of the interviewer were identified as a potential source of variation in outcome, and a target for future research and practice

    Figurative language comprehension in individuals with autism spectrum disorder: A meta-analytic review

    Get PDF
    We present a meta-analysis of studies that compare figurative language comprehension in individuals with autism spectrum disorder and in typically developing controls who were matched based on chronological age or/and language ability. A total of 41 studies and 45 independent effect sizes were included based on predetermined inclusion criteria. Group matching strategy, age, types of figurative language, and cross-linguistic differences were examined as predictors that might explain heterogeneity in effect sizes. Overall, individuals with autism spectrum disorder showed poorer comprehension of figurative language than their typically developing peers (Hedges’ g = –0.57). A meta-regression analysis showed that group matching strategy and types of figurative language were significantly related to differences in effect sizes, whereas chronological age and cross-linguistic differences were not. Differences between the autism spectrum disorder and typically developing groups were small and nonsignificant when the groups were matched based on the language ability. Metaphors were more difficult to comprehend for individuals with autism spectrum disorder compared with typically developing controls than were irony and sarcasm. Our findings highlight the critical role of core language skills in figurative language comprehension. Interventions and educational programmes designed to improve social communication skills in individuals with autism spectrum disorder may beneficially target core language skills in addition to social skills

    A Quantum-Mechanical Equivalent-Photon Spectrum for Heavy-Ion Physics

    Get PDF
    In a previous paper, we calculated the fully quantum-mechanical cross section for electromagnetic excitation during peripheral heavy-ion collisions. Here, we examine the sensitivity of that cross section to the detailed structure of the projectile and target nuclei. At the transition energies relevant to nuclear physics, we find the cross section to be weakly dependent on the projectile charge radius, and to be sensitive to only the leading momentum-transfer dependence of the target transition form factors. We exploit these facts to derive a quantum-mechanical ``equivalent-photon spectrum'' valid in the long-wavelength limit. This improved spectrum includes the effects of projectile size, the finite longitudinal momentum transfer required by kinematics, and the response of the target nucleus to the off-shell photon.Comment: 19 pages, 5 figure

    Another exact inflationary solution

    Full text link
    A new closed-form inflationary solution is given for a hyperbolic interaction potential. The method used to arrive at this solution is outlined as it appears possible to generate additional sets of equations which satisfy the model. In addition a new form of decaying cosmological constant is presented.Comment: 10 pages, 0 figure

    The new two-image gravitational lens system CLASS B2319+051

    Get PDF
    We report the discovery of a new two-image gravitational lens system from the Cosmic Lens All-Sky Survey, CLASS B2319+051. Radio imaging with the Very Large Array (VLA) and Multi-Element Radio-Linked Interferometer Network (MERLIN) shows two compact components with a flux density ratio of 5:1, separated by 1.36 arcsec. Observations with the Very Long Baseline Array (VLBA) resolve each of the radio components into a pair of parity-reversed subcomponents. Hubble Space Telescope (HST) observations with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) show a bright elliptical galaxy (G1) coincident with the radio position, and a second irregular galaxy (G2) 3.4 arcsec to the northwest. Previous spectroscopic studies have indicated that these galaxies are at different redshifts: z(G1) = 0.624, z(G2) = 0.588. Infrared counterparts to the lensed radio components are not detected in the NICMOS image, and the source redshift has not yet been determined. Preliminary mass modeling based on the VLBA subcomponent data indicates that the lensing potential includes a strong external shear contribution. A VLA monitoring program is currently being undertaken to measure the differential time delay.Comment: 16 pages, 7 figs, several typos corrected, AJ in press (August 2001

    CLASS B2108+213: A new wide separation gravitational lens system

    Get PDF
    We present observations of CLASS B2108+213, the widest separation gravitational lens system discovered by the Cosmic Lens All-Sky Survey. Radio imaging using the VLA at 8.46 GHz and MERLIN at 5 GHz shows two compact components separated by 4.56 arcsec with a faint third component in between which we believe is emission from a lensing galaxy. 5-GHz VLBA observations reveal milliarcsecond-scale structure in the two lensed images that is consistent with gravitational lensing. Optical emission from the two lensed images and two lensing galaxies within the Einstein radius is detected in Hubble Space Telescope imaging. Furthermore, an optical gravitational arc, associated with the strongest lensed component, has been detected. Surrounding the system are a number of faint galaxies which may help explain the wide image separation. A plausible mass distribution model for CLASS B2108+213 is also presented.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    Disentangling Baryons and Dark Matter in the Spiral Gravitational Lens B1933+503

    Get PDF
    Measuring the relative mass contributions of luminous and dark matter in spiral galaxies is important for understanding their formation and evolution. The combination of a galaxy rotation curve and strong lensing is a powerful way to break the disk-halo degeneracy that is inherent in each of the methods individually. We present an analysis of the 10-image radio spiral lens B1933+503 at z_l=0.755, incorporating (1) new global VLBI observations, (2) new adaptive-optics assisted K-band imaging, (3) new spectroscopic observations for the lens galaxy rotation curve and the source redshift. We construct a three-dimensionally axisymmetric mass distribution with 3 components: an exponential profile for the disk, a point mass for the bulge, and an NFW profile for the halo. The mass model is simultaneously fitted to the kinematics and the lensing data. The NFW halo needs to be oblate with a flattening of a/c=0.33^{+0.07}_{-0.05} to be consistent with the radio data. This suggests that baryons are effective at making the halos oblate near the center. The lensing and kinematics analysis probe the inner ~10 kpc of the galaxy, and we obtain a lower limit on the halo scale radius of 16 kpc (95% CI). The dark matter mass fraction inside a sphere with a radius of 2.2 disk scale lengths is f_{DM,2.2}=0.43^{+0.10}_{-0.09}. The contribution of the disk to the total circular velocity at 2.2 disk scale lengths is 0.76^{+0.05}_{-0.06}, suggesting that the disk is marginally submaximal. The stellar mass of the disk from our modeling is log_{10}(M_{*}/M_{sun}) = 11.06^{+0.09}_{-0.11} assuming that the cold gas contributes ~20% to the total disk mass. In comparison to the stellar masses estimated from stellar population synthesis models, the stellar initial mass function of Chabrier is preferred to that of Salpeter by a probability factor of 7.2.Comment: 16 pages, 13 figures, minor revisions based on referee's comments, accepted for publication in Ap
    • 

    corecore