373 research outputs found
Geochemical modelling of water-rock interaction
CO2 geological storage is one of the most promising technologies for reducing atmospheric emissions of greenhouse gas. In this work we present and discuss a new approach geochemical modelling for evaluating the effects of short-medium term CO2 disposal in deep geologic formations that has been tested in the Weyburn test site (Saskatchewan, Canada), where since September 2000 5000 t/day of supercritical CO2 are injected. The geochemical modeling has been performed by using the code PRHEEQC (V2.11) software package, via thermodynamic corrections to the code default database. First, we reconstructed the in-situ reservoir (62°C and 0.1 MPa) chemical composition, including pH, by the chemical equilibrium among the various phases, and we evaluated the boundary conditions (e.g. PCO2 , PH2S), which are necessary for the implementation of reaction path modeling. This is the starting point to assess the geochemical impact of CO2 into the oil reservoir and, as main target, to quantify water-gas-rock reactions. Furthermore, we identified possible compositions of the initially reservoir liquid phases by assuming the equilibrium conditions for the mineral assemblage with respect to a Na-Cl water (Cl/Na=1.2). Then we computed the kinetic evolution of the CO2-rich Weyburn brines interacting with the host-rock minerals, performed over 100 years after injection. Results of reaction path modeling suggest that, in this period, CO2 can be neutralized by solubility (as CO2 (aq)) and mineral trapping through Dawsonite precipitation. In order to validate our geochemical model we have simulated the geochemical impact of three years of CO2 injection (September 2000-2003) by kinetically controlled reactions and we have compared the computed and measured data. The calculated chemical composition after the CO2 injection is consistent with the analytical data of samples collected in 2003 with an error within 5 % for most analytical species, with the exception of the Ca and Mg contents (error > 90%), likely due to the complexation effect of carboxilic acid
Recommended from our members
An exploration of sequence specific DNA-duplex/pyrene interactions for intercalated and surface-associated pyrene species. Final report, May 1, 1993--December 31, 1996
The broad objective of this DOE sponsored work on photoinduced electron transfer (ET) within covalently modified DNA was to learn about the rates of Et among various DNA bases and commonly used organic electron donor (D) and acceptor (A) molecules. This hypothesis driven, multidisciplinary project combined skills in modified nucleic acid synthesis and in continuous and time-resolved optical spectroscopies. Covalently modified DNA chemistry as investigated in this program had two specific long term goals. The first was to use experimental and theoretical insights into the mechanisms of electron transfer (ET) reactions to design supramolecular assemblies of redox-active chromophores that function as efficient vectorial ET engines. The second was to construct oligonucleotide probes for real-time monitoring of intracellular processes involving DNA and RNA such as m-RNA expression and translocation. This research project laid the groundwork for studying ET reactions within DNA duplexes by examining the photophysics of uridine nucleosides which are covalently labeled at the 5-position with 1-pyrenyl chromophores
Degradation of the Indospicine Toxin from Indigofera spicata by a Mixed Population of Rumen Bacteria
The leguminous plant species, Indigofera linnaei and Indigofera spicata are distributed throughout the rangeland regions of Australia and the compound indospicine (L-2-amino-6-amidinohexanoic acid) found in these palatable forage plants acts as a hepatotoxin and can accumulate in the meat of ruminant livestock and wild camels. In this study, bovine rumen fluid was cultivated in an in vitro fermentation system provided with Indigofera spicata plant material and the ability of the resulting mixed microbial populations to degrade indospicine was determined using UPLC–MS/MS over a 14 day time period. The microbial populations of the fermentation system were determined using 16S rRNA gene amplicon sequencing and showed distinct, time-related changes occurring as the rumen-derived microbes adapted to the fermentation conditions and the nutritional substrates provided by the Indigofera plant material. Within eight days of commencement, indospicine was completely degraded by the microbes cultivated within the fermenter, forming the degradation products 2-aminopimelamic acid and 2-aminopimelic acid within a 24 h time period. The in vitro fermentation approach enabled the development of a specifically adapted, mixed microbial population which has the potential to be used as a rumen drench for reducing the toxic side-effects and toxin accumulation associated with ingestion of Indigofera plant material by grazing ruminant livestock
EUV and HXR Signatures of Electron Acceleration During the Failed Eruption of a Filament
We search for EUV brightenings in TRACE 171 {\AA} images and HXR bursts
observed during failed eruptions. We expect that if an eruption is confined due
to interaction with overlying magnetic structures then we should observe
effects connected with reconnection between magnetic structures and
acceleration of particles. We utilized TRACE observations of three well
observed failed eruptions. EUV images were compared to HXR spatial distribution
reconstructed from Yohkoh/HXT and RHESSI data. The EUV light curves of a
selected area were compared to height profiles of eruption, HXR emission and
HXR photon spectral index of power-law fit to HXR data. We have found that EUV
brightenings are closely related to the eruption velocity decrease, to HXR
bursts and to episodes of hardening of HXR spectra. The EUV brightened areas
are observed far from the flaring structure, in footpoints of large systems of
loops observed 30-60 minutes after the maximum of a flare. These are not
`post-flare' loops that are also observed but at significantly lower heights.
The high lying systems of loops are observed at heights equal to height, at
which eruption was observed to stop. We observed HXR source spatially
correlated with EUV brightening only once. For other EUV brightened areas we
estimated the expected brightness of HXR sources. We find that EUV brightenings
are produced due to interaction between the erupting structure with overlying
loops. The interaction is strong enough to heat the system of high loops. These
loops cool down and are visible in EUV range about 30-60 minutes later. The
estimated brightness of HXR sources associated with EUV brightenings shows that
they are too weak to be detected with present instruments. However, next
generation instruments will have enough dynamic range and sensitivity to enable
such observations.Comment: A&A accepte
Dual-locus DNA metabarcoding reveals southern hairy-nosed wombats (Lasiorhinus latifrons Owen) have a summer diet dominated by toxic invasive plants
Habitat degradation and summer droughts severely restrict feeding options for the endangered southern hairy-nosed wombat (SHNW; Lasiorhinus latifrons). We reconstructed SHNW summer diets by DNA metabarcoding from feces. We initially validated rbcL and ndhJ diet reconstructions using autopsied and captive animals. Subsequent diet reconstructions of wild wombats broadly reflected vegetative ground cover, implying local rather than long-range foraging. Diets were all dominated by alien invasives. Chemical analysis of alien food revealed Carrichtera annua contains high levels of glucosinolates. Clinical examination (7 animals) and autopsy (12 animals) revealed that the most degraded site also contained most individuals showing signs of glucosinolate poisoning. We infer that dietary poisoning through the ingestion of alien invasives may have contributed to the recent population crashes in the region. In floristically diverse sites, individuals appear to be able to manage glucosinolate intake by avoidance or episodic feeding but this strategy is less tractable in the most degraded sites. We conclude that recovery of the most affected populations may require effective Carrichtera management and interim supplementary feeding. More generally, we argue that protection against population decline by poisoning in territorial herbivores requires knowledge of their diet and of those food plants containing toxic principles
Assessing the risk of residues of the toxin indospicine in bovine muscle and liver from north-west Australia
Indospicine is a natural toxin occurring only in Indigofera plant species, including the Australian native species I. linnaei. These perennial legumes are resistant to drought and palatable to grazing livestock including cattle. Indospicine accumulates in the tissues (including muscle) of animals grazing Indigofera and these residues persist for several months after exposure. Dogs are particularly sensitive to indospicine with reports in past decades of hepatotoxicosis and mortalities in dogs after dietary exposure to indospicine-contaminated horse and camel meat. The risk for human consumption is not known, and the current study was undertaken to assess indospicine levels in cattle going to slaughter from divergent regions of Western Australia, and to predict the likelihood of significant residues being present. Muscle and corresponding liver samples from 776 cattle originating from the Kimberley and Pilbara Regions in the tropical north of the state, where I. linnaei is prevalent, and 640 cattle from the South West and South Coast Regions in the temperate south west of the state, where the plant is not known to occur, were collected at abattoirs over four seasons in 2015-2017. Indospicine levels were measured by LC-MS/MS and ranged from below detection to 3.63 mg/kg. No indospicine residues were detected in any of the animals originating from the South West and South Coast Regions. Prevalence of indospicine residues in cattle from the Kimberley Region was as high as 33% in spring and 90% in autumn, with positive animals being present in most consignments and on most properties. The average prevalence of indospicine residues from the Kimberley and Pilbara Regions throughout the survey period was 62%. @Risk best fit probability distributions showed ninety-fifth percentile (P95) indospicine concentrations of 0.54 mg/kg for muscle and 0.77 mg/kg for liver in cattle originating from the Kimberley and Pilbara Regions during the survey period. When considered with average Australian meat consumption data, the estimated consumer exposure from this P95 muscle was 0.32 μg indospicine/kg bw/day, which compared favourably with our calculated provisional tolerable daily intake (PTDI) of 1.3 μg indospicine/kg bw/day. However canine exposure is of potential concern, with active working dog exposure calculated to exceed this PTDI by a factor of 25, based on a P95 indospicine concentration of 0.54 mg/kg in muscle
AlN overgrowth of nano-pillar-patterned sapphire with different offcut angle by metalorganic vapor phase epitaxy
We present overgrowth of nano-patterned sapphire with different offcut angles by metalorganic vapor phase epitaxy. Hexagonal arrays of nano-pillars were prepared via Displacement Talbot Lithography and dry-etching. 6.6 µm crack-free and fully coalesced AlN was grown on such substrates. Extended defect analysis comparing X-ray diffraction, electron channeling contrast imaging and selective defect etching revealed a threading dislocation density of about 109 cm−2. However, for c-plane sapphire offcut of 0.2° towards m direction the AlN surface shows step bunches with a height of 10 nm. The detrimental impact of these step bunches on subsequently grown AlGaN multi-quantum-wells is investigated by cathodoluminescence and transmission electron microscopy. By reducing the sapphire offcut to 0.1° the formation of step bunches is successfully suppressed. On top of such a sample an AlGaN-based UVC LED heterostructure is realized emitting at 265 nm and showing an emission power of 0.81 mW at 20 mA (corresponds to an external quantum efficiency of 0.86%)
AlN overgrowth of nano-pillar-patterned sapphire with different offcut angle by metalorganic vapor phase epitaxy
We present overgrowth of nano-patterned sapphire with different offcut angles by metalorganic vapor phase epitaxy. Hexagonal arrays of nano-pillars were prepared via Displacement Talbot Lithography and dry-etching. 6.6 µm crack-free and fully coalesced AlN was grown on such substrates. Extended defect analysis comparing X-ray diffraction, electron channeling contrast imaging and selective defect etching revealed a threading dislocation density of about 109 cm-2. However, for c-plane sapphire offcut of 0.2° towards m direction the AlN surface shows step bunches with a height of 10 nm. The detrimental impact of these step bunches on subsequently grown AlGaN multi-quantum-wells is investigated by cathodoluminescence and transmission electron microscopy. By reducing the sapphire offcut to 0.1° the formation of step bunches is successfully suppressed. On top of such a sample an AlGaN-based UVC LED heterostructure is realized emitting at 265 nm and showing an emission power of 0.81 mW at 20 mA (corresponds to an external quantum efficiency of 0.86 %)
Human DESC1 serine protease confers tumorigenic properties to MDCK cells and it is upregulated in tumours of different origin
Proteolysis of the extracellular matrix components plays a crucial role in the regulation of the cellular and physiological processes, and different pathologies have been associated with the loss or gain of function of proteolytic enzymes. DESC1 (differentially expressed in squamous cell carcinoma gene 1), a member of the TTSP (type II transmembrane serine protease) family of serine proteases, is an epithelial-specific enzyme that has been found downregulated in squamous cell carcinoma of the head and neck region. We describe new properties of DESC1 suggesting that this protease may be involved in the progression of some type of tumours. Thus, this enzyme hydrolyses some extracellular matrix components, such as fibronectin, gelatin or fibrinogen. Moreover, Madin–Darby canine kidney (MDCK) cells expressing exogenous human DESC1 acquire properties associated with tumour growth such as enhanced motility and an increase of tubular forms in a 3D collagen lattice following HGF treatment. Finally, we generated polyclonal anti-DESC1 antibodies and immunohistochemical analysis in tissues different from head and neck region indicated that this protease was overexpressed in tumours of diverse origins. Taken together, our results suggest that DESC1 could be considered as a potential therapeutic target in some type of tumours
Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer
<p>Abstract</p> <p>Background</p> <p>In a previous report we have demonstrated that the chymotryptic-like serine protease kallikrein 7 (<it>KLK7</it>/hK7) is overexpressed in pancreatic cancer. In normal skin, hK7 is thought to participate in skin desquamation by contributing in the degradation of desmosomal components, such as desmogleins. Thus, the ability of hK7 to degrade desmogleins was assessed and the effect of hK7 expression on desmoglein 2 was examined in cultured pancreatic cancer cells.</p> <p>Methods</p> <p>The expression of Dsg1, Dsg2, and Dsg3 in pancreatic tissues was examined by immunohistochemistry and their expression in two pancreatic cancer cell lines, BxPC-3 and Panc-1, was determined by western blot analysis. The ability of hK7 to degrade Dsg1 and Dsg2 was investigated using <it>in vitro </it>degradation assays. BxPC-3 cells stably transfected to overexpress hK7 were used to examine the effect of hK7 on cell-surface resident Dsg2.</p> <p>Results</p> <p>The levels of immunoreactive Dsg1 and Dsg2 were reduced in pancreatic adenocarcinomas compared with both normal pancreatic and chronic pancreatitis tissues. Among the desmosomal proteins examined, Dsg2 exhibited robust expression on the surface of BxPC-3 cells. When hK7 was overexpressed in this cell line, there was a significant increase in the amount of soluble Dsg2 released into the culture medium compared with vector-transfected control cells.</p> <p>Conclusion</p> <p>A reduction in the amount of the cell adhesion components Dsg1 and Dsg2 in pancreatic tumors suggests that loss of these desmosomal proteins may play a role in pancreatic cancer invasion. Using <it>in vitro </it>degradation assays, both Dsg1 and Dsg2 could be readily proteolyzed by hK7, which is overexpressed in pancreatic adenocarcinomas. The enforced expression of hK7 in BxPC-3 cells that express significant amounts of Dsg2 resulted in a marked increase in the shedding of soluble Dsg2, which is consistent with the notion that aberrant expression of hK7 in pancreatic tumors may result in diminished cell-cell adhesion and facilitate tumor cell invasion.</p
- …