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Abstract

Habitat degradation and summer droughts severely restrict feeding options for the endan-

gered southern hairy-nosed wombat (SHNW; Lasiorhinus latifrons). We reconstructed

SHNW summer diets by DNA metabarcoding from feces. We initially validated rbcL and

ndhJ diet reconstructions using autopsied and captive animals. Subsequent diet reconstruc-

tions of wild wombats broadly reflected vegetative ground cover, implying local rather than

long-range foraging. Diets were all dominated by alien invasives. Chemical analysis of alien

food revealed Carrichtera annua contains high levels of glucosinolates. Clinical examination

(7 animals) and autopsy (12 animals) revealed that the most degraded site also contained

most individuals showing signs of glucosinolate poisoning. We infer that dietary poisoning

through the ingestion of alien invasives may have contributed to the recent population

crashes in the region. In floristically diverse sites, individuals appear to be able to manage

glucosinolate intake by avoidance or episodic feeding but this strategy is less tractable in

the most degraded sites. We conclude that recovery of the most affected populations may

require effective Carrichtera management and interim supplementary feeding. More gener-

ally, we argue that protection against population decline by poisoning in territorial herbivores

requires knowledge of their diet and of those food plants containing toxic principles.

Introduction

Australia hosts the world’s most distinctive mammalian fauna but has suffered more extinc-

tions in the past 200 years than any other nation [1]. Wombats are marsupials (family
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Vombatidae) that comprise three species: bare-nosed (Vombatus ursinus), northern hairy-

nosed (Lasiorhinus kreffii) and southern hairy-nosed (Lasiorhinus latifrons). Wombats are the

world’s largest burrowing herbivores and typically forage nocturnally. All species have

declined significantly since the spread of European farming [2]. Fragmented southern hairy-

nosed wombat (SHNW) populations occur in South Australia and Western Australia [3] and

are considered ‘near-threatened’ on the IUCN red list [4]. Extensive population crashes in

South Australia have been informally linked to overgrazing, drought and influx of invasive

plants [5]. SHNWs also suffer from grazing competition [6] and sarcoptic mange [7].

SHNWs have adapted to extract sufficient water from their preferred grass diet to survive

summer droughts [8] and so may be vulnerable to dietary change. Over recent decades habitats

supporting SHNWs have suffered invasion by several alien plant species, most notably Carrich-
tera annua, Asphodelus fistulosus, Moraea setifolia and various species of Medicago (e.g. [9]).

This has occurred at the expense of native grasses that previously flourished throughout sum-

mer [10]. This poses a dilemma for SHNW survival. Avoidance of alien species risks accelerat-

ing displacement of favored grasses. Conversely, if the SHNWs do graze on the invaders, their

new food source may not hold sufficient water or nutrients to enable survival of summer. The

new food may also be toxic.

SHNWs are thought to have a narrower diet than generalist herbivores [6], and although

capable of broadening dietary choices under stress [11] may be ill-equipped to digest novel

plant species or to tolerate any toxins they contain. It is therefore important to characterize

their diet, especially during the dry summer months, when the species is most vulnerable.

Interest has been growing over recent years over the use of DNA metabarcoding

approaches to reconstruct the diets of animals [12,13,14,15,16]. Diet reconstruction of preda-

tory species typically make use of the universal animal barcode, cytochrome oxidase 1 (CO1)

[15,16]. In the case of herbivore diets however, relatively few studies have used the core plant

barcodes (rbcL and matK) for this purpose [17,18]. MatK is notoriously difficult to amplify in

some plant groups [19] and its length (950p) is ill-suited to most metabarcoding methodolo-

gies [20]. Most researchers have therefore elected to work with rbcL (e.g. [18]) and/or shorter

non-coding loci such as trnL [17,21]. Regardless of the marker choice made, it is important to

recognize that no metabarcoding protocol is free from error. It is preferable to incorporate

controls and (ideally) multiple loci when attempting to reconstruct diets using these

approaches [22]. Here, we deploy ndhJ and rcbL metabarcoding on fresh SHNW scats to test

the extent to which alien plants feature in their summer diet. We characterized the toxin con-

tent of alien plants eaten and surveyed SHNWs for diagnostic signs of poisoning.

Materials and methods

Statement on animal ethics

Veterinary and pathological investigations were conducted by qualified and registered veteri-

narians under University Animal Ethics Approval S-2011-196; S2011-197D and S2014-075,

and DEW scientific permit Q25996-1. Permission for site access for Moorunde was granted

from Dr Peter Clements, President of the Moorunde Wildlife Land Reserve Charitable Trust

(which owns the land), and from Dr David Taggart for Kooloola and Portee (Owned by South

Autralian Govt (SA); S.A. Dept of Environment and Water, Scientific Research Permit

A26829-1).

Sample collection

Plant and scat samples were collected for diet reconstruction during February-March 2013

from three South Australian locations: Moorunde (34.46382oS, 139.47087oE), Kooloola
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(34.53875oS, 139.58832oE) and Portee (34.46241oS, 139.47336oE). Scats were also collected

from captive animals. Wild plant species were identified morphologically [23]. Relative species

abundance was assessed at each site and reference voucher specimens collected for barcoding.

Fresh scats were collected along North-South and East-West transects of 1.25km, and stored at

-80˚C.

Plant phytochemistry

Plant leaf material was collected for phytochemical analysis from all three sites during Febru-

ary-March 2015. For Carrichtera annua, green emergent seedlings, adult plants and persistent

dead materials with siliques containing seeds were sampled.

Clinical and pathological investigations

Seven wombats in poor health (1 adult, 5 subadults, 1 juvenile) were presented for veterinary

evaluation, all from Portee. Haematological and biochemical analyses were conducted at the

local Veterinary Diagnostic Laboratory (VDL). One of these animals subsequently died and

was autopsied. In addition, SHNWs from the same area, either found dead (e.g. road accident)

or humanely euthanised on welfare grounds were subjected to autopsy and alimentary canal

sampling. These animals originated from Kooloola (n = 2), Moorunde (n = 4), Portee (n = 7),

and elsewhere from the Murraylands (n = 7). Ingested material from the stomach, intestine

and/or internal scats of these animals was collected and stored at -80˚C.

DNA extraction

DNA of abundant plant species (S1 Table) was extracted from leaves using the Isolate II Plant

DNA extraction kit (Bioline). DNA was also extracted from freeze-dried (~10 mg) autopsy

samples and scats using the same kit, with protocol adjustments of 600 μl lysis buffer and

675 μl binding buffer, 30μl elution in PG buffer. Six scats were halved and independent DNA

extractions made from both halves to assess intra-scat variability.

Plant reference barcodes

Reference barcode PCRs were conducted in 25 μl mixtures comprising: 1x Biomix (Bioline);

200 pM of primers (ndhJ1+ndhJ4 [24]; rbcLa_f + rbcLa_rev, [25,26] and 25 ng of DNA. PCR

conditions were: 94˚C for 30 s, 40 cycles of 94˚C 30 s, 54˚C 60 s, 72˚C 60 s and a final extension

of 72˚C 5 min. Products were purified using Nucleofast 96 PCR plates (Macherey-Nagel) and

Sanger-sequenced. The forward and reverse reads were aligned, edited and trimmed in Gen-

eious (V8.1, Biomatters). Further reference barcodes were recovered from the NCBI database

for food plants of captive animals (S1 Text).

NGS metabarcoding of scat/autopsy samples

A two-step PCR generated rbcL and ndhJ barcodes from scat/autopsy samples. First, the fol-

lowing Illumina sequences were added to the 5’ end of primers:

F: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG,

R: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG.

Initial amplification was performed in 20μl of: 1x MyFi Buffer, 1.6U MyFi Polymerase (Bio-

line), 200 pM of each forward and reverse primers, and 20 ng DNA. PCR conditions for rbcL
and ndhJ: 95˚C (1 min) followed by 35 cycles of 95˚C 15 s, 55˚C 15 s, 72˚C 15 s. Products were

purified using the Agencourt AMPure XP PCR Purification beads at a v/v ratio of 0.6x beads/

PCR product.
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Second PCR was performed in 12.5 μl volumes of: 1x MyFi Buffer (Bioline,); 0.4 nM of

paired Nextera 96 Indices (Illumina); 1.6U MyFi Polymerase (Bioline) and 2 μl of purified ini-

tial amplicon. Thermocycling conditions were: 95˚C 1 min, then 5 cycles 95˚C 5 s, 55˚C 10 s,

72˚C 10 s. Products were purified as above and quantified by qPCR calibrated to known PhiX

standards (Illumina) using the SYBR FAST qPCR Kit (Kapa Biosystems) on a RotorGene RG-

6000 (Corbett).

Indexed libraries were pooled and 16 pM aliquots were paired-end sequenced on a MiSeq

sequencer using a 600-cycle Version 3 kit (Illumina). The MiSeq Bcl output files were de-mul-

tiplexed and converted to FASTQ files using MiSeq Reporter v2.6 software (Illumina).

Data analysis

FASTQ files were processed using a custom Python script to remove primer sequences, low-

quality bases from the 3’ end (phred < 30) and PCR artefacts. We demanded both the forward

and reverse reads contribute to sequences passing filter. Singletons were excluded. Minimum

combined sequence length after trimming was 280 bases and minimum contribution of indi-

vidual trimmed reads was 30 bases. This generated our High Quality (HQ) data set.

We assessed the extent to which our reference DNA barcodes fully represented the

sequences recovered from scats. For this we used FLASH [27], [parameters set:—m = 10,

-x = 0.02, -M250]) to merge the ndhJ forward and reverse HQ reads for each sample. RbcL
derived sequences did not merge since the amplicon size exceeded the length of the forward

and reverse trimmed reads.

The five most abundant merged ndhJ sequences from each sample were used to create a

non-redundant sequence set. This sequence set was subsequently compared to our ndhJ refer-

ences by BLASTn [28]. Sequences that were not 100% identical to our references were consid-

ered novel and examined further. BLASTn searches were performed against NCBI’s non-

redundant database and sequences that matched with three mismatches or less were annotated

with the species name of the database entry. Equidistant matches, i.e. when a query sequence

matched equally to two or more database sequences or no hits with less than four mismatches

the query sequence, were deemed ‘Unknown’ with the sample identity in brackets. Thus, we

extended our ndhJ reference set by 48 additional reference sequences.

Read mapping of the HQ data to the extended ndhJ and the rbcL references was performed

by Bowtie 2 V2.2.6 [29] using the following settings:—end-to-end—score-min L,0,-0.045—mp

3—rdg 3,3—rfg 3,3—no-unal—very-sensitive—no-mixed—no-discordant—maxins 1000—

reorder -k 500—mm. We post-filtered the BAM files to remove sequences that aligned with

more than three mismatches and those that mapped to more than two references. We then

summarized the read counts.

Identification of dietary species

Trimmed and cleaned sequence reads were ranked according to frequency and plant species

representation within each scat calculated as a proportion of the total. Species with a propor-

tional representation below 0.1% were discarded as trace components. An arbitrary threshold

of 1% of counts from a scat was imposed for plant species to be included for display purposes.

‘Unknown’ sequences were subject to a BLASTn search (https://blast.ncbi.nlm.nih.gov) and

the top hit recorded.
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Multivariate analyses

Principal Component analyses (PCAs) were performed on normalised barcode counts (natural

log transformation) recovered from all scats using the computer program MVSP (Multi-Vari-

ate Statistical Package version 3.22, Kovach Computing Services).

Plant toxicological analysis

Carrichtera annua was analysed by a modified glucosinolate method [30]. Milled plants (40

mg) were heated (75˚C, 5 min) to deactivate myrosinase, then extracted with aqueous metha-

nol (2 mL, 70%, 70˚C) for 20 min, centrifuged (5 min, 18˚C, 6000 rpm) and supernatant col-

lected. The residue was re-extracted twice, and the combined supernatant analysed on a

Waters Acquity UPLC-PDA at 225 nm with an external calibration of Sinigrin (Sigma-

Aldrich) for quantification. Glucosinolates were separated on a UPLC Acquity BEH C18 col-

umn (50 mm x 2.1 mm id, 1.7 μm) at 35˚C, eluted with 0.1% formic acid in 10 mM ammo-

nium acetate (A) and acetonitrile (B) at 0.2 ml/min and a linear gradient: 3% B to 60% B in 8

min. Glucosinolates were identified based on mass and reported fragment ions [31] on an

UHPLC-MS QExactive (Thermo Fisher Scientific) equipped with a Dionex Ultimate 3000

UHPLC using identical chromatographic conditions as above. For each compound, a full scan

in positive (ESI) ionization mode was acquired at a resolving power of 70,000 full width half

maximum. A MS scan range m/z 300–1800 was selected, with a MS2 scan range m/z 50–500.

Moraea setifolia was screened for bufadienolide-type cardiac glycosides using an adapted

method of [32] after reports suggesting their presence in this species [33]. Milled plants (100

mg) were mixed with 2 ml 95% ethanol containing 200 μl m-dinitrobenzol (10 μg/ml metha-

nol) as internal standard and incubated at 78˚C (1h). Samples were centrifuged (10 min, 18˚C,

4500 rpm), and the supernatant collected. The extraction was repeated twice and combined

supernatants evaporated to dryness under nitrogen at 78˚C. The residue were re-dissolved in 1

ml methanol, and analysed according to [34], using UPLC system described above. A Waters

Acquity HSS T3 column (100 mm x 2.1 mm id x 1.8 μm) was eluted at 0.250 ml/min with a

mobile phase comprising 0.1% formic acid (A) and acetonitrile (B) and a linear gradient: 15%

B to 50% B (25 min), 50% B to 45% B (5 min). Traces were monitored at 300 nm with bufalin

(Sigma-Aldrich) as an external standard. The samples were also analysed on a UPHLC-MS/

MS.

Asphodelus fistulosus was assessed for anthraquinones (potential photosensitizers) following

reports of these compounds in this species [35]. Milled plant (5 g) was sequentially extracted

with n-hexane, ethyl acetate and methanol.

Rostraria cristata is favored as a source of fodder in several parts of the world [36,37] and so

was not subject to chemical analysis.

Results

Plant community structure

The three locations diverged in plant community structure (S1 Table). Moorunde was open

woodland with a patchy canopy (Eucalyptus gracilis; Eucalyptus oleosa and Myoporum platy-
carpum) over scrub (Geijera linearifolia; Senna artemisioides; Enchylaena tomentosa; Moraea
setifolia; Zygophyllum spp.; Carrichtera annua and Brassica tournefortii). Kooloola was a closed

scrubland (Atriplex stipitata; Maireana spp.; Marrubium vulgare; Ajuga iva; Sida corrugate;
Moraea setifolia; Carrichtera annua and Brassica tournefortii) with highly scattered Eucalyptus
oleosa. Portee was more degraded, with closed herbland dominated by Carrichtera annua,

Asphodelus fistulosus and Moraea setifolia over Erodium crinitum, Carrichtera annua and
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Brassica tournefortii. Moorunde contained most species (56; 25 site-specific) followed by Koo-

loola (37 species; 11 site-specific) and Portee (27 species; 2 site-specific). Overall, there were

just sixteen plant species present in all three sites, of which the majority (12) were aliens

(Table 1). Given the widespread but uneven nature of symptomatic wombats across the Mur-

raylands, particularly during summer, we next sought to investigate whether these widely dis-

tributed alien species featured significantly in their summer diets.

Plant barcode reference library

Construction of a local reference barcode library is the first step in dietary reconstruction by

metabarcoding. Our reference library (114 specimens) included 83 samples morphologically

identified to species, six to genus and three unknowns. DNA barcodes were recovered from all

species and genera for rbcL, and all but 4 species for ndhJ (Amyema miquellii, A. preissii, Good-
enia pinnatifida, Zygophyllum apiculatum). The 3 unknowns were assigned to two tribes

(Camphorosmeae, Amaranthaceae and Gnaphalieae, Asteraceae) following BLASTn align-

ment. UPGMA trees of these sequences revealed 71 unique barcodes for ndhJ and 78 for rbcL
(S1 Fig).

Diet reconstruction from autopsy samples

NdhJ and rbcL metabarcode profiles were constructed from alimentary canal samples of ten

autopsied wombats. Sequence recovery was far higher for ndhJ than rbcL. We uniquely

mapped 1,316,225 ndhJ sequences to a single taxonomic group (mean: 48,749 per sample),

compared with 90,817 for rbcL (mean 3,493 per sample). Diets reconstructed from biological

and technical replicates of the same animal and taken from the same part of the alimentary

tract were similar for both markers (Fig 1). There was also broad congruence between diets

reconstructed from the two markers, despite substantial variation between animals (Fig 1).

RbcL profiles contained 14 times fewer unique matches than ndhJ and were slightly more

variable between replicates. There were nine instances where a species was present only in one

rbcL replicate diet. This compares with four instances for ndhJ. Lower absolute counts recov-

ered for rbcL were also associated with wider variation between replicates in percentage esti-

mates of species composition. However, the lower sequence yields of rbcL were partly

compensated by an increased ability to distinguish between taxa. RbcL alone was able to

Table 1. Plant species present in the three study sites in the Murraylands, South Australia.

Plant species present in Moorunde (M), Kooloola (K) and Portee (P)

Native species Alien species

1. Austrostipa sp.

2. Eucalyptus oleosa (M,K)
3. Euphorbia drummondii
4. Rhytidosperma caespitosa

5. Ajuga iva (M,K,P)
6. Brassica tournefortii (M,K,P)

7. Calotis hispidula
8. Carrichtera annua (M,K,P)
9. Erodium crinitum (M,K,P)
10. Heliotropium europaeum

11. Herniaria cinerea
12. Hypochaeris radicata

13. Moraea setifolia (M,K,P)
14. Rostraria cristata
15. Silene apetala

16. Sonchus oleraceus

Species that were dominant in the plant communities of Moorunde (M), Kooloola (K) and Portee (P) are indicated in

brackets.

https://doi.org/10.1371/journal.pone.0229390.t001
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separate Maireana lobifolia from the Camphorosmeae group (Amaranthaceae), and also Aus-
trostipa elegantissima and A. drummondii from other Austrostipa species. Overall, the profiles

from the autopsy replicate samples indicate that ndhJ provides far higher sequence yields and

so creates more stable estimates of dietary composition than rbcL, despite the latter’s slightly

increased capacity to distinguish between some taxa.

In three cases, we were able to compare ndhJ dietary profiles from stomach and anal scats

of the same individual. There were inconsistencies in every case. In animal 13–0282, the repli-

cated stomach diets (Fig 2A) were similar to those of the scats but lacked Ajuga iva as a minor

component. The stomach and scat profiles of animal 13–0317 were widely divergent, with Hor-
deum glaucum the only species present in both profiles (Fig 2B). The stomach profiles of ani-

mal 13–0646 lacked Juncus effusus which was abundant in scat profiles (Fig 2C). A fourth

animal yielded only a single useable scat sample but the dietary profiles of the two technical

replicates from this animal were very similar (Fig 2D).

Incongruence between stomach and anal scat profiles could plausibly arise from episodic

feeding, intra-scat heterogeneity or technical inconsistencies. We recovered between 14,447

and 55,848 sequences from half-scat replicates and uniquely mapped 85% - 91% of input

reads. Moreover, twinned samples varied in the number of absolute counts retrieved from

each sample (by 2–37%) but the resultant profiles invariably shared the same species identity

and rank order for main dietary components, with only modest variation in proportions (S2

Table). The identity of most minor dietary components was also conserved, although there

were some differences between pairs in the minor species visible above the 1% (display) thresh-

old. However, the ’absent’ species were invariably present in the replicate half but at levels

between 0.1% and 1% thresholds and so may have been a consequence of the variation in total

sequence reads. Thus, only modest variance seems attributable to technical factors or intra-

scat heterogeneity. We therefore infer that wide divergence observed between stomach and

scat profiles is most consistent with episodic feeding.

Diet of captive wombats

We next reconstructed ndhJ profiles using scats from three captive zoo animals for which liv-

ing environment and diet was essentially the same. The ndhJ diets of these three animals

shared the same major and most minor component species (Fig 3). These were congruent with

partly characterized diets of these animals (S1 Text), which were dominated by cereals, com-

mercial grasses, vegetables, and both native and alien plants in their enclosure (including trace

amounts of Carrichtera annua).

Diet of wild wombats

We mapped 86% (6,116,612/7,130,787) of clean ndhJ reads to a unique reference barcode and

3% (223,789/7,130,787) to two reference barcodes from the NCBI database. Overall, ndhJ map-

ping frequencies for individual scats exceeded 90% (mean 92%). Success rates were far lower

for the longer rbcL locus, where we recovered 1,244,055 clean sequences across all scats, with

797,480 (64%) mapped uniquely to a local reference barcode and 82,826 (7%) to two reference

(NCBI) barcodes. The residual 29% failed to map to any reference barcode. The percentage of

sequence reads that mapped to reference barcodes varied considerably between individual

Fig 1. Diets of deceased southern hairy nosed wombats. Diets reconstructed from three parts of the alimentary canal (stomach, long intestine and fecal [scat]

samples) using ndhJ (panel A) and rbcL (panel B). Histograms represent percentage of ndhJ or rbcL barcodes matching one of the species shown in the margin. Codes

on x-axis indicate the organ used, a numeric indication of year (12 = 2012), a numeric identifier of the animal. The final letter (A-C) indicates sample replicates, with

technical replicates possessing identical letters.

https://doi.org/10.1371/journal.pone.0229390.g001
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scats and was lower than ndhJ (mean 73.5%). The superior performance of ndhJ led to its use

as the primary source of information for dietary reconstruction for comparison between sites.

Population-averaged Moorunde scat ndhJ profiles suggested wombats in this location had

the most diverse summer diet (Fig 4A), featuring Carrichtera annua (41%) and Moraea setifo-
lia (30%) prominently, and a significant presence of Euphobia drumondii (8%), Medicago min-
ima (5%), Schismus barbatus (5%), unknown Camphorosmeae (Amaranthaceae) (4%),

Brassica tournefortii (3%) and Erodium crinitum (2%). Thus, the diet is dominated by the same

two plant species that dominate the ground canopy (Carrichtera annua and Moraea setifolia;
S1 Table). The near absence of the native grass genus Austrostipa (0.14%) from both ground

cover and reconstructed diet is also worthy of note. There was considerable intra-site variabil-

ity between scats, although this was minor compared to inter-site variation (Fig 4B). Most

individual Moorunde scats followed a similar pattern to the population as a whole, with either

Carrichtera annua or Moraea setifolia dominating in all but three scats (Fig 4B). Two dietary

components (Camphorosmeae, Amaranthaceae and Medicago minima) were abundant/domi-

nant in only a few scats whereas most other components (e.g. Brassica tournefortii) appeared

commonly in modest amounts across many scats.

Population-averaged Kooloola diet contained four main components: Sida corrugata
(22%); Atriplex stiptata (19%); Moraea setifolia (19%) and the Camphorosmeae group

Fig 2. Within-animal variation in reconstructed diets of deceased southern hairy nosed wombats. Diets reconstructed using ndhJ sequences recovered from

replicated stomach and fecal samples of three animals (A-C), with one animal yielding only fecal samples (D). Histograms represent percentage of reference ndhJ
barcodes matching one of the species shown in the panel for: (A) stomach and fecal profiles from animal 282; (B) stomach and fecal profiles from animal 317; (C)

stomach and fecal profiles from animal 646 and D technical replicates of a fecal profiles of animal 190.

https://doi.org/10.1371/journal.pone.0229390.g002
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(Amaranthaceae) (32%) (Fig 4A). Malva parviflora, Carrichtera annua, and Austrostipa sp.

were significant minor dietary components (1–2%). Thus, two of the dominant ground cover

species (Atriplex stiptata and Moraea setifolia) featured prominently, with the remaining main

dietary components (Sida corrugata and Camphorosmeae, Amaranthaceae) both common in

the ground flora (S1 Table). Diets from individual scats were more consistent in Kooloola than

elsewhere (Fig 4B) and featured the same four dominant species groups seen in the averaged

diet, although relative proportions varied. Moraea setifolia and Atriplex stiptata were most var-

iable (4–86% and 2–69% of total diet, respectively) whereas Sida corrugata and the Camphor-

osmeae (Amaranthaceae) group were more consistent (2–41% and 6–47%, respectively; Fig 4).

Of the minor dietary components only Malva parviflora appeared in more than half of the

samples (20/29), and none reached 4% of the profile for any scat (Fig 4B).

Population-averaged Portee site diet was notable by domination of Carrichtera annua
(57%) and Asphodelus fistulosus (27%) (Fig 4A). Moraea setifolia (7%), Brassica tournefortii
(6%), Medicago minima (2%) and Sonchus sp. (1%) formed significant minor components.

The two main dietary species (Carrichtera annua and Asphodelus fistulosus) again matched the

dominant ground cover for the site (S1 Table). Despite the relative simplicity of the pooled

diet, there was extensive variation between individual scats, with no species universally present

(Fig 4B). Minor species were similarly variable in presence and abundance (Fig 4B).

Fig 3. Diets of captive southern hairy nosed wombats. Diets reconstructed using ndhJ sequences from feces of three zoo animals (Zoo A-C) provided

a semi-controlled diet. Histograms represent percentage of reference ndhJ barcodes matching species shown in the panel.

https://doi.org/10.1371/journal.pone.0229390.g003
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Diet comparison between sites

There was a clear relationship between the major dietary components and the species compo-

sition of the local plant community. Moreover, the diets of wombats overwhelmingly featured

those plant species that also dominated the plant communities from which they were taken (S3

Table). Indeed, plant species found to dominate the canopy, understorey or ground cover of

these communities accounted for 88%, 99% and 99% of the reconstructed diets of wombats

from Moorunde, Kooloola and Portee respectively (S3 Table). There was nevertheless clear evi-

dence of the selective feeding. Over half of the dominant species in Moorunde and Portee

failed to feature in the diets of any individuals and three dominant species were absent from

the reconstructed diets from Kooloola (S3 Table). Equally, two relatively infrequent species

from Moorunde (Euphorbia drummondii and Medicago minima) and one from Kooloola

(Sonchus sp.) featured in the reconstructed diets at levels far above their ground cover presence

(S3 Table).

A 3D multivariate PCA plot of individual scat profiles from all sites and representing 80%

of total variation revealed evidence of structuring between locations, and revealed clear separa-

tion of scats from Kooloola and Portee (Fig 5). However, a small number of individual scats

from the most floristically-diverse Moorunde site co-clustered with scat profiles more typical

of both Kooloola and Portee (Fig 5).

RbcL diets

The rbcL diets were broadly congruent with ndhJ diets but were more variable and based on

fewer sequences (Fig 6). However, several minor components from the ndhJ profiles were con-

sistently absent from rbcL profiles. Euphorbia drumondii, Schismus barbatus, Brassica tourne-
fortii and Erodium crinitum were missing from Moorunde, Sida corrugata from Kooloola and

Brassica tournefortii and an unresolved Sonchus species from Portee (Fig 6). Thus, despite hav-

ing increased ability to separate taxonomic groups, rbcL profiles were more volatile and gener-

ally featured fewer components.

Clinical and pathological investigations

All seven clinically examined wombats from Portee were in poor to emaciated body condition,

with moderate to extensive alopecia, poor hair quality and discoloration, and with dermatitis

present in six animals. Haematological and biochemical analysis showed a poorly regenerative

anemia (n = 5) and hypoproteinaemia characterized by hypoalbuminemia (n = 5), and low

creatinine (n = 5) consistent with malnutrition, chronic disease, and/or toxicity. In four indi-

viduals, moderate elevations in serum ALP, AST, ALT, GLDH and/or GGT activities and bili-

rubin was suggestive of hepatic disease. A severe hepatopathy was confirmed in one of these

individuals at autopsy (12–0399), although autopsies were not performed on the remaining

three.

Autopsy investigations

Condition of wombats varied widely between sites (S4 Table). All wombats from Portee were

in poor to emaciated body condition and showed moderate to extensive alopecia and hair coat

discoloration. Three showed severe hepatopathy (megalocytosis, hepatocellular necrosis, bile

Fig 4. Summer diets of southern hairy nosed wombats in the Murraylands reconstructed from ndhJ sequences. Panel A shows population-wide

diets reconstructed using ndhJ sequences from all samples in Moorunde, Kooloola and Portee sites. Panel B shows diets of individual samples

collected in each of the three sites. Diets are represented as the percentage of sequences matching to one of the species shown in the key.

https://doi.org/10.1371/journal.pone.0229390.g004
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duct hyperplasia, cholestasis, bridging fibrosis), two of which also had photosensitive dermati-

tis. Three further animals exhibited milder non-specific hepatic lesions (bile duct hyperplasia,

periportal to bridging fibrosis, hepatocellular anisokaryosis) and one had hepatic atrophy. The

four wombats examined from Moorunde were in poor to moderate body condition. All had

dermatitis with intralesional mites but only one showed mild hepatic lesions (mild biliary

hyperplasia and periportal fibrosis). Two ‘road kill’ wombats from Kooloola were in good

physical health prior to death. Major pathological findings from seven additional Murraylands

wombats from outside the study sites indicated a similarly patchy occurrence of hepatic disor-

ders in the region (S4 Table).

Plant toxicology

We first sought to identify alien species most likely to affect the health of wombats exhibiting

symptoms of ill-health. Four of the twelve alien species found in all sites failed to appear in the

reconstructed diets of any animal above 1% (viz: Calotis hispidula; Heliotropium europaeum;
Herniaria cinerea; Hypochaeris radicata) (S2 Table, Figs 1, 2 and 4) and so were discarded

from further analysis. Only four of the remaining eight species (Brassica tournefortii, Carrich-
tera annua, Moraea setifolia and Rostraria cristata) featured in the diets of deceased wombats

exhibiting symptoms at the time of death (Fig 1; S4 Table). The last of these (Rostraria cristata)

is favored as a source of fodder in several parts of the world (see above) and so was discarded

from toxicological analysis. Of the remaining three alien species examined, no known toxic

principles were detected in Moraea setifolia (specifically, no bufadienolides) or Asphodelus

Fig 5. Principal Component Analysis (PCA) of reconstructed diets from three locations. PCA of ndhJ sequences from fresh feces of southern hairy nosed wombats

collected in: Moorunde (red triangles); Kooloola (inverted blue triangles) and Portee (green circles) in the Murraylands, South Australia. The three axes represent 80%

of total variation.

https://doi.org/10.1371/journal.pone.0229390.g005
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fistulosus (no anthraquinones). However, high levels of glucosinolates were recovered from

adult Carrichtera annua (128–149 μmol/g DW). Far lower levels were recovered from dry

dead material and seeds (2–21 μmol/g DW) of this species (S5 Table).

Discussion

There has been an impressive expansion in the number and diversity of plant reference DNA

barcodes available for use in dietary studies [20]. However, the core plant barcodes (rbcL and

matK) have residual limitations for use in herbivore diet reconstruction. Poor amplification of

matK in many plant species [19,20] and the modest information content of rbcL, when coupled

with inherent difficulty in securing high quality DNA sequence from fecal samples has led to

most groups to favor more variable and shorter loci such as trnL [17,21], despite the need to

create study-specific reference barcodes. Even in the presence of such precautions, however,

no metabarcoding protocol is free from error.

Biological replicates in the present study exhibited up to 40% variation in the total number

of barcode sequences that passed quality filter. Insufficient barcode read recovery in a profile

has potential to increase error in percent estimations of species abundance and may markedly

skew estimates of minor species components (rare barcodes being missed or over-repre-

sented). Such differences in total count recovery may be readily explained by modest composi-

tional differences between replicate scat halves or minor variation in technical processes such

as library preparation. Despite such differences, broad consistency between the percent species

composition of technical (PCR) and biological replicates provides some support the tenet that

the barcode profiles do provide a reasonable indication of the species mix in the scats, particu-

larly for the major dietary component species.

Of far greater concern is the possibility of systematic errors. The propensity of all barcode

loci to fail or only weakly amplify some taxonomic groups [38] creates scope for the omission

of some dietary components or else for the systematic under-representation of inefficiently

amplified species. Comparison between diets reconstructed using different loci helps uncover

such discrepancies. The two markers used here differ in length and the species they reliably

amplify [24]. However, both separated the vast majority of plant species and generated broadly

congruent diet profiles. Despite its increased information content, rbcL produced simpler pro-

files and omitted some of the minor dietary components detected by ndhJ. Accordingly, the

latter was deemed most reliable marker for dietary reconstruction. Further support for this

stance came from the close match between the partly characterized (and very distinct) diets of

captive animals and their scat profiles. Equally, the broad congruence between the ground

cover species at all three wild sites and the population-wide scat profiles adds further support

that such profiles probably provide at least a crude approximation of the ingested diet.

Care is nevertheless needed when relating scat profiles to biomass ingested by animals.

Plant species and tissues vary in the number of chloroplasts or proplastids per cell/tissue [39]

and genomes per plastid (see [40]). Barcode count frequency from digested or semi-digested

samples therefore can only be viewed as providing an indicative guide of major and minor die-

tary components, and not a truly quantitative reflection of the diet (without extensive calibra-

tion). Biological sources of error could also distort dietary profiles. For example, if the

herbivore exhibits episodic feeding, then wide variances may appear between scat profiles.

Fig 6. Summer diets of southern hairy nosed wombats in the Murraylands reconstructed using RbcL sequences. Diets reconstructed using RbcL
sequences recovered from southern hairy nosed wombat scats. Panel A shows the population-wide diets reconstructed using rbcL sequences from all

samples collected in Moorunde, Kooloola and Portee sites. Panel B shows the diets of individual samples collected in each of the three sites. Diets are

represented as the percentage of sequences matching to one of the species shown in the key.

https://doi.org/10.1371/journal.pone.0229390.g006
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Indeed, our results provided some evidence of episodic feeding in two autopsied animals. Tell-

ingly, Juncus effusus was a dominant component in scat profiles of one animal, Mesembryan-
themum in another but both species were missing from the corresponding stomach profiles.

Absence from the stomach discounts the possibility of preferential digestion and when consid-

ered together with the high abundance and distinctness of both dominant barcodes, strongly

suggests episodic feeding. Episodic feeding may offer an additional explanation for some of

the inter-sample variation seen in all populations. Despite clear separation between scat pro-

files from the three locations, subclustering within each site is again suggestive that episodic

feeding is commonplace.

Overall, summer diets of the SHNWs seem heavily determined by location; a feature that is

perhaps unsurprising for a territorial, burrowing herbivore whose feeding options are highly

limited during dry summer months. The main dietary species at all sites closely matched the

ground coverage, suggesting that the SHNWs continue to feed in summer and display limited

levels of selection during this stressful period.

Invasive plants can alter native plant community structure and reduce availability of ‘safe’

food for herbivores [41]. For resident herbivores with seasonal food shortages, community

shifts can compel consumption of potentially toxic plants to avoid starvation [42]. There were

five alien species that were abundant in all sites. Of these, glucosinolates have been reported in

Brassica tournefortii [43] and were found here in high quantities in Carrichtera annua. We

found no evidence of any toxic principles in the other three species. Brassica tournefortii and

Carrichtera annua featured in all sites but were far more prominent in scats from Portee;

accounting for more than half of the reconstructed diet. For one animal, these were the only

dietary species observed in the scat and in four others, they exceeded 80%. Excessive intake of

glucosinolates has been associated with several health problems in livestock, notably including

reduced feed intake and growth, hepatic lesions (bile duct hyperplasia, megalocytosis, zonal

hepatocyte necrosis, and hepatic fibrosis), photosensitivity and anemia [44,45]. All wombats

examined from Portee showed signs of severe weight loss, alopecia and changes in hair color

and quality. Blood testing (n = 7) also suggested anemia, hypoproteinaemia (hypoalbumine-

mia), and reduced creatinine consistent with malnutrition, chronic disease and/or toxicity,

and in four individuals, elevations in serum ALP, AST, ALT, GLDH and/or GGT activities

suggested underlying hepatic disease. Moreover, post-mortem examination of six of seven

Portee wombats showed hepatic lesions consistent with glucosinolate poisoning. By compari-

son, scats from Kooloola contained <3% of the glucosinolate-containing aliens (Brassica tour-
nefortii and Carrichtera annua) and the two animals examined from this site lacked signs of

glucosinolate toxicity. The small proportion that did (6%; 5/81) may be plausibly explained by

episodic feeding on these alien plants. It is also important to recognize the possibility of cumu-

lative toxic exposure to other plants outside the summer period. The small number of Moor-

unde wombats examined lacked obvious signs of poisoning except for low body weight and

mild non-specific hepatic lesions in one adult female. Brassica tournefortii and Carrichtera
annua featured significantly in the diets of these animals but at a much lower level than seen in

Portee.

In this study, we have focused on the impact of toxic alien invasive plants on the health of

the wombats. However, we cannot discount the possibility that food shortage during summer

led some animals to increase consumption of very toxic native plants. For example, members

of the genus Euphorbia are widely reported to be toxic to mammals [46,47] but also appeared

in the diets of some individuals featured in the current study. However, Euphorbia drumondii
featured prominently in the diets of more than a quarter of wombats from Moorunde (where

symptomatic animals are rarely observed) and was absent from the diets of any wombat from

Portee (where symptomatic individuals are most common). It was also present in significant
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quantities in the stomach of an asymptomatic deceased wombat recovered from Moorunde

(12–144) but absent from the diets of almost all deceased but symptomatic wombats. Never-

theless, the possibility remains that some animal may suffer from the effects of ingesting

extremely toxic plants in small doses. This is something that requires further investigation.

Conclusions

The most plausible explanation of the poor health of Portee wombats resides at least partly on

their heavier reliance on glucosinolate-containing alien plants during summer. The same alien

plants do feature in the summer diets of wombats in the more floristically-rich Kooloola and

Moorunde. In these sites, it is tempting to postulate that there is sufficient dietary choice for

most animals to manage their glucosinolate intake via total avoidance or episodic feeding on

these plants. Excessive glucosinolate intake can potentially further exacerbate the recent popu-

lation pressures on SHNWs particularly if habitat degradation such as that seen in Portee

becomes more widespread. To reverse these trends, we advocate the prioritised control of Car-
richtera annua and Brassica tournefortii as part of habitat restoration programs. Supplemen-

tary feeding (particularly fresh grasses or cereals) during summer droughts may also provide

support for the affected populations while such restorations take effect.

More generally, we note the efficacy of episodic feeding as a defense against poisoning is

inextricably linked to the diversity and abundance of other food plants available. We therefore

argue that protection against population decline in any territorial herbivore by poisoning

requires knowledge of all components of the diet, not just those that contain toxic principles.
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