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We present overgrowth of nano-patterned sapphire with 

different offcut angles by metalorganic vapor phase 

epitaxy. Hexagonal arrays of nano-pillars were prepared 

via Displacement Talbot Lithography and dry-etching. 

6.6 µm crack-free and fully coalesced AlN was grown on 

such substrates. Extended defect analysis comparing X-

ray diffraction, electron channeling contrast imaging and 

selective defect etching revealed a threading dislocation 

density of about 109 cm-2. However, for c-plane sapphire 

offcut of 0.2° towards m direction the AlN surface shows 

step bunches with a height of 10 nm. The detrimental 

impact of these step bunches on subsequently grown 

AlGaN multi-quantum-wells is investigated by 

cathodoluminescence and transmission electron 

microscopy. By reducing the sapphire offcut to 0.1° the 

formation of step bunches is successfully suppressed. On 

top of such a sample an AlGaN-based UVC LED 

heterostructure is realized emitting at 265 nm and 

showing an emission power of 0.81 mW at 20 mA 

(corresponds to an external quantum efficiency of 0.86 

%). 
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1 Introduction Due to the lack of bulk AlN substrates 

in sufficient numbers, diameters and low cost AlGaN-

based ultraviolet (UV) light emitting diodes (LEDs) are 

typically grown on AlN/sapphire pseudo-substrates  by 

metalorganic vapor phase epitaxy (MOVPE) . This is mo-

tivated by numerous applications for UV LEDs, e.g. in 

phototherapy, UV curing and water disinfection1)-4).  

The main challenge in preparing AlN/sapphire templates is 

the high threading dislocation density (TDD) of about 

1010 cm-2 at growth start due to the nucleation process and 

the difference in thermal expansion coefficients. During 

subsequent growth, these threading dislocations (TDs) 

penetrate through the layer stack in the growth direction 

leading to non-radiative recombination in the active region 

of subsequently grown LED heterostructures limiting the 

internal quantum efficiency (IQE)5). Experimental investi-

gations and simulations by several groups have shown, that 

a reduction of the TDD below 109 cm-2 will enable UV 

LEDs with high IQE6)-8). To reach for such low TDD al-

ready in the AlN/sapphire template, there has been work 

on many different techniques in preparing AlN/sapphire 

templates as for example pulsed growth9), nitridation of the 

sapphire10), high temperature annealing of AlN/sapphire11)-

15) and epitaxial lateral overgrowth (ELO)16)-18) of AlN or 

sapphire patterns in the micrometer range.  
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Further work on the ELO technique has shown that reduc-

ing the pattern dimensions to the nanometer range results 

in further advantages: Coalescence thickness shrinks cut-

ting production costs19),20) and the TDD can be more effi-

ciently reduced by bending many of the dislocation lines to 

the sidewalls of the structure21). Besides material quality, 

using ELO especially with nano-patterns can enhance light 

extraction efficiency (LEE) for UV LEDs by suppressing 

internal total reflection at the AlN/sapphire interface 

through which the light is usually coupled out22),23).  

There has been much work on nano-hole patterns, however 

only little on the inverted pattern of nano-pillars. Nano-

patterned sapphire substrates (NPSS) with nano-pillars 

have the advantage that strain management is less critical, 

since AlN nucleates non-continuously on each pillar and 

later coalesces. Air-voids will be included which help to 

relax tensile strain. However, up to now it was not possible 

to achieve an atomically smooth surface since the high 

growth temperature usually applied for realizing coales-

cence leads to formation of high step bunches22),24). These 

surface steps lead to compositional inhomogeneity in sub-

sequently grown AlGaN25) and can be detrimental in terms 

of efficiency of the final UV LED devices. 

To address this problem, in this study we investigate AlN 

growth on nano-pillar NPSS with different offcut angles of 

the sapphire substrate. The cost-efficient, reproducible fab-

rication of sub-micrometer surface structures homogene-

ously on whole wafers is still challenging. Hence, we in-

troduce a relatively new and easy approach including Dis-

placement Talbot Lithography (DTL)26),27). To qualify the 

AlN/NPSS templates as device substrates, luminescence 

characteristics and structural properties of subsequently 

grown AlGaN multi quantum wells (MQWs) emitting at 

265 nm are investigated. Furthermore, a full UVC LED 

heterostructure emitting at 265 nm is realized. 

 

2 Experimental setup 

 2.1 Fabrication of NPSS Figure 1(a) presents the 

fabrication process to create arrays of sapphire nano-pillars. 

A stack of two layers was spin-coated on 2-inch sapphire 

substrates; first a bottom antireflective coating (BARC) 

layer (WiDE® 30W – Brewer Science) and second, a high-

contrast positive resist layer (Dow® Ultra-i 123 diluted 

with Dow® EC11 solvent). Displacement Talbot Lithogra-

phy (PhableR 100, Eulitha) was then used to expose the re-

sist through an amplitude mask having a hexagonal con-

figuration of 550 nm diameter circular openings with a 

pitch of 1 μm. Nano-holes were formed in the resist after 

exposure and development along with an undercut in the 

underlying BARC. Metal was then deposited via e-beam 

evaporation and lift-off achieved by soaking the wafer in 

the developer. The resulting array of nano-dots was trans-

ferred into the sapphire via an inductively coupled plasma 

(ICP) dry etch system (Oxford Instruments System 100 

Cobra). The experiments were performed with Cl2/BCl3/Ar 

flows of 5/50/5 sccm, a temperature set to 5 °C, a pressure 

of 8 mTorr, 100 W RF power and 600 W ICP source pow-

er. Finally, the metal mask was removed in aqua-regia so-

lution (HCl:HNO3, 3:1). Figure 1(b) and 1(c) display a tilt-

ed and a cross-sectional scanning electron microscopy 

(SEM) image of the nano-pillar NPSS after the overall 

process. The nano-pillars were found to be uniform across 

the 2-inch wafer, with a flat top c-plane, a height of 260 

nm, and a top and bottom diameter of 280 and 430 nm, re-

spectively (sidewall facets tilted by 75° towards the sap-

phire c-plane). This process was carried out for sapphire 

substrates with both 0.1° and 0.2° offcut towards the m di-

rection.  

 

Figure 1 a) Sketch of the process flow for fabrication of nano-

pillar NPSS. b) Tilted view and c) cross-sectional SEM image of 

fully fabricated nano-pillar NPSS with photograph of full 2-inch 

wafer as insert of c).28) 

 

2.2 MOVPE growth and characterization For AlN 

growth on the NPSS with different offcut, an 

AIX2400G3HT MOVPE planetary reactor with a capabil-

ity of 11 x 2-inch wafers was used with the standard pre-

cursors TMAl and NH3. Reactor pressure during growth 

was kept constant at 50 mbar and H2 served as carrier gas. 

At growth start, a 50 nm thick nucleation layer was depos-

ited at a process temperature (Tproc) of 980 °C and an input 

group V to group III (V/III) ratio of 400029). After nuclea-

tion, a high temperature growth step was performed at 

Tproc = 1380 °C, V/III ratio of 30 and resulting growth rate 

of 1.7 µm/h. The high temperature growth step was fol-

lowed by a medium temperature growth step at Tproc = 

1180 °C, V/III ratio of 30 and resulting growth rate of 1.5 

µm/h. During both growth steps the partial pressures were 

kept constant at PNH3 = 0.2235 mbar, PTMAl = 0.0069 mbar 

and PH2 = 49.7763 mbar. For in-situ characterization, the 

405 nm reflectance from the sample surface during AlN 
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overgrowth was monitored by a LayTec EpiCurveTT in-

situ metrology system while Tproc was measured pyromet-

rically at the backside of the substrate holder. Subsequently, 

AlGaN-based multi-quantum-wells (MQWs) and UVC-

LEDs with emission near 265 nm at room temperature 

were grown by MOVPE in a Close Coupled Showerhead 

system using standard precursors and dopants (TMGa, 

TEGa, TMAl, NH3, Cp2Mg, SiH4)13),30). Nitrogen and hy-

drogen were used as carrier gases. On top of the 

AlN/NPSS templates a 400 nm thick homoepitaxial AlN 

buffer layer followed by a 900 nm thick Al0.76Ga0.24N:Si 

current spreader and a 200 nm thick Al0.65Ga0.35N:Si con-

tact layer were grown with the Al content between those 

two layers graded over 100 nm. The active region consists 

of an Al0.48Ga0.52N/Al0.63Ga0.37N MQW stack. The electron 

blocking heterostructure consists of a 10 nm thick 

Al0.85Ga0.15N interlayer and a 25 nm thick Al0.75Ga0.25N:Mg 

electron blocking layer. The heterostructure is capped with 

a 200 nm thick GaN:Mg contact layer. The MQW hetero-

structure is identical to the UVC-LED heterostructure ex-

cept for the omission of the electron blocking heterostruc-

ture and the GaN:Mg contact layer Atomic force micros-

copy (AFM) was utilized to investigate the surface mor-

phology of the AlN after overgrowth. X-ray diffraction 

(XRD) was used for measuring rocking curves with a 

Philips X’Pert Pro system including a four-fold 220 Ge 

monochromator to estimate the TDD. The aperture on the 

source side was 0.5 mm x 5 mm and the acceptance angle 

in front of the detector was 1°. Two additional ways to de-

termine the TDD were applied: Selective defect etching by 

an alkaline melt31) and electron channeling contrast imag-

ing (ECCI)32)-35). To characterize the luminescence behav-

ior, cathodoluminescence (CL) measurements of the Al-

GaN MQWs on top of the AlN were performed in plan-

view. Furthermore, morphological inhomogeneities were 

investigated by cross-sectional scanning transmission elec-

tron microscopy (STEM). Finally, on-wafer electrolumi-

nescence (EL) measurements were performed for the full 

UVC-LED heterostructure using indium dots as contacts.  

3 Results and discussion 
3.1 AlN overgrowth To successfully grow on the 

NPSS, a three-step growth process was performed24). In-

situ 405 nm reflectance and temperature transients during 

growth on the 0.2° and 0.1° offcut samples are shown in 

Fig. 2. After low temperature nucleation, high temperature 

(1380 °C) and low V/III ratio (30) were applied to enhance 

the diffusion length of Al adatoms and hence to favor lat-

eral growth. The reflectance shows typical Fabry-Perot os-

cillations due to increasing layer thickness while the over-

all average reflectance increases and then saturates at a 

value of about 0.12 at a layer thickness of about 4 µm, in-

dicating coalescence of the layer. The subsequent growth 

at medium temperature (1180 °C) at the same V/III ratio 

(30) should shift the growth mode from step bunching 

growth towards step-flow growth mode to smoothen the 

surface after coalescence ending up with a total layer 

thickness of about 6.6 µm. Both reflectance curves for the 

samples with different offcuts in principal follow the same 

behavior. However, a slightly higher average reflectance 

during medium temperature growth for the 0.1° offcut 

sample can be observed. 

 

Figure 2 405 nm reflectance and process temperature Tproc 

against run time for the three-step growth process on NPSS with 

offcut of 0.2° (dashed-black) and 0.1° (solid-red). 

AFM images of the surface morphology for both samples 

before and after the medium temperature growth step to 

smoothen the surface are shown in Fig. 3. Before smooth-

ing, there are step bunches visible for both samples (Fig. 

3a,b) resulting in a rather rough surface with a root mean 

square (rms) roughness value of 3.7 nm for 0.2° and 2.9 

nm for 0.1° offcut on 10 µm x 10 µm surface area. After 

smoothing, the 0.2° offcut sample still shows step bunches 

(rms = 3.7 nm) while for the 0.1° offcut sample an atomi-

cally smooth surface (rms = 0.9 nm) with typical bilayer 

steps is observed (Fig. 3c,d). Step bunches form if the Al 

adatom diffusion length exceeds a certain value in relation 

to the terrace width determined by the sample offcut36),37). 

They formed for both samples during the high temperature 

growth step in which the Al adatom diffusion length is at 

its maximum. However, the medium temperature growth 

step induced step-flow growth mode for the 0.1° offcut 

sample due to the larger terrace length leading to smooth-

ing of the step bunches in contrast to the 0.2° offcut sample 

for which the step-bunched growth prevails. This also ex-

plains the slight increase of the average reflectance during 

medium temperature growth for the 0.1° offcut sample, 

since the step bunches lead to a small amount of scattering 

reducing the reflectance until they are smoothened. 
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Figure 3 AFM images of the AlN surface before and after 

smoothing for NPSS with a), c) 0.2° offcut and b), d) 0.1° offcut 

NPSS including the associated rms value for comparison of the 

roughness. 

 

3.2 Defect analysis For defect analysis, firstly, the 

standard technique of measuring the X-ray rocking curve 

FWHM (XRC-FWHM) of the 0002 and 10-12 reflections 

was carried out. For the 0.2° offcut sample values of 300 

arcsec and 810 arcsec were acquired, for the 0.1° offcut 

sample 510 arcsec and 1160 arcsec for 0002 and 10-12 re-

spectively. That leads to estimated38),39) TDDs of 

7 x 109 cm-2 for the 0.2° and 1 x 1010 cm-2 for the 0.1° off-

cut sample. These are relatively high values for about 6.6 

µm AlN on sapphire. Unfortunately, the calculation of 

TDDs from XRC-FWHM can be applied only if there are 

no other significant broadening mechanisms present in 

AlN. In case of the laterally overgrown regions on the 

samples and due to the non-continuous surface at growth 

start, wing tilt is expected to broaden the XRC-

FWHM24),40) and hence can falsify the TDD estimation by 

calculation. Therefore, alternative methods for analyzing 

the TDDs, namely ECCI and selective defect etching, were 

applied to both samples (Fig. 4). From ECCI (Fig. 4a,b), 

TDDs of 8 x 108 cm-2 for 0.2° and 1.5 x 109 cm-2 for 0.1° 

offcut were estimated by simply counting the dislocations 

(seen as points in black-white contrast)32),33). For selective 

defect etching (Fig. 4c,d), TDDs of 9 x 108 cm-2 for 0.2° 

offcut and 1 x 109 cm-2 for 0.1° offcut were determined by 

counting the etch pits after etching. The smaller etch pits 

can be ascribed to pure edge type TDs while mixed type 

TDs yield bigger pits31),41). The small deviation in TDD for 

the 0.2° offcut sample between ECCI and selective defect 

etching can be explained by leaving out dislocations at the 

step edges in the case of ECCI, since the topographic con-

trast from the step edges dominates the diffraction contrast 

required to image dislocations (Fig. 4a), while selective de-

fect etching clearly shows many TDs lined up along the 

step edges (Fig. 4c). Attractive forces in the direction of 

free surfaces acting on TDs42) lead to TD bending towards 

the step sidewalls during growth and therefore induce this 

lining up along the steps. For the uniformly distributed dis-

locations of the 0.1° offcut sample, without overlapping 

contrast of surface steps, the TDDs determined by ECCI 

and selective defect etching are in good agreement. The 

slightly higher TDD of about 1 x 109 cm-2 for 0.1° offcut in 

comparison to the 0.2° offcut sample is related to the lining 

up of the TDs along the step edges, since this increases the 

probability of dislocations to annihilate. In all, it can be 

concluded, that the much lower TDDs suggested by ECCI 

and selective defect etching are more trustworthy than the 

TDDs calculated from the XRD FWHM. 

 

Figure 4 ECCI images43) of the surface (after smoothing) for the 

a) 0.2° and b) 0.1° offcut sample and SEM images of the surface 

(after smoothing) after selective defect etching for the c) 0.2° and 

d) 0.1° offcut sample. 

 

3.3 AlGaN heterostructure growth The 

AlN/NPSS templates were overgrown with AlGaN MQWs 

emitting at 265 nm at room temperature. Their lumines-

cence behavior was investigated by spatially-resolved low-

temperature CL at 80 K (Fig. 5a,b). The main lumines-

cence peak was found at 255 nm and is attributed to the 

luminescence of 265 nm at room temperature. In the mon-

ochromatic CL images at 255 nm dark pits are observed 

for the 0.2° offcut sample while for the 0.1° offcut sample 

the luminescence is homogenous. Some of the dark pits 

show luminescence at a longer wavelength of 318 nm (Fig. 

5c). The pits themselves seem to be aligned in lines follow-

ing the arrangements of the former step bunches on the 

0.2° offcut AlN template. Cross-sectional STEM investiga-

tions (Fig. 6) show that these V-shaped pits originate deep 

inside the AlGaN. They are formed above TDs (Fig. 6b) 

and are partly overgrown during the subsequent growth. 

Probably, similar to InGaN alloys, they can form out of 
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TDs with a large Burgers vector such that the building up 

of free surfaces is energetically favorable44)-46). 

 

 
 

Figure 5 Mono-CL images (plan-view) acquired at 255 nm of the AlGaN MQWs for the a) 0.2° and b) 0.1° offcut sample. c) Mono-

CL image at 318 nm at the same position of the 0.2° offcut sample as in a).

 

 
 

Figure 6 a) Cross-sectional STEM image of a V-pit in the layer stack on the 0.2° off-cut sample. b) Annular dark-field STEM image 

of the same sample position showing that the V-pit formation occurs above a dislocation line. The subsequent V-pit filling with 

Ga-rich (Al,Ga)N leads to the formation of a broad dislocation net around the V-pit. c) EDX spectra acquired at the sample posi-

tions marked in (b) proving the higher Ga content in the V-pit. 

 

This explains also the alignment along step edges, since as 

shown before, the TDs tend to line up there, increasing the 

probability of dislocation cluster formation with resulting 

large Burgers vectors. The luminescence at 318 nm (Fig. 

5c) can be explained by preferential Ga incorporation on 

the sidewalls and inside these pits due to the higher diffu-

sion length of the Ga adatoms during AlGaN 

growth25),47),48) and the locally lower compressive strain in 

the vicinity of sidewall facets. Energy dispersive X-ray 

(EDX) spectra prove the increased Ga content inside such 

a V-pit compared to areas without any V-pits (Fig. 6c). 

Despite the presence of free surfaces inside the pits, which 

facilitate strain relaxation, the growth of Ga-rich material 

inside them leads to further strain relaxation by the for-

mation of a broad net of dislocations around the pits (Fig. 

6b). These defect-rich regions are spatially localized 

around the pits, but appear directly within the active region. 

Obviously, such pits will limit the final device perfor-

mance of an LED by limiting mainly the IQE but also be-

ing possible short cuts leading to increased leakage cur-

rent49). 

Finally, a full UVC-LED heterostructure emitting at 265 

nm was grown on top of the most promising 0.1° offcut 

AlN/NPSS template. Electroluminescence measurements 

using on-wafer indium dot quick test show the spectrum 

with clear single peak emission at 265 nm (Fig. 7a). Fur-

thermore, an emission power of 0.81 mW at 20 mA was 

measured (Fig. 7b) corresponding to an external quantum 

efficiency of 0.86%. This proves the possibility of using 

AlN/nano-pillar NPSS as UV-LED templates obtaining 

comparable results with respect to recently published 

LEDs from our groups using the different template tech-

nology of sputtered and high temperature annealed 

AlN/sapphire13).  

 

4 Conclusions In this work, nano-pillar NPSS with 

different offcut angles were successfully fabricated by 

Displacement Talbot Lithography and dry etching. Apply-

ing a three step growth process, they were overgrown end-

ing up with 6.6 µm crack-free and fully coalesced AlN. 

The sample with 0.2° substrate offcut showed 10 nm high 

step bunches while for the lower offcut of 0.1° the surface 

appears atomically smooth. An extended defect analysis 

showed that for these samples the estimation of TDD from 

XRC-FWHM fails, most probably due to wing tilt in the 

laterally grown AlN. ECCI and selective defect etching 

showed more reliable TDD determination for the samples: 

The AlN grown on nano-pillar NPSS shows TDDs of 

about 109 cm-2. However, for the larger offcut of 0.2°, step 

bunches formed which accumulated an increased number 

of TDs and led to the formation of pits in subsequently 

grown AlGaN and thus inhomogeneous luminescence from 

the MQWs on top. In contrast, for the smaller offcut of 

0.1°, the formation of step bunches was suppressed, and 

hence, homogeneous luminescence of subsequently grown 

AlGaN MQWs could be achieved. On such a sample, a full 
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UVC-LED heterostructure emitting at 265 nm was realized 

showing an emission power of 0.81 mW at 20 mA corre-

sponding to an external quantum efficiency of 0.86 %. This 

result is comparable to another state-of-the-art template 

technology of sputtered and high temperature annealed 

AlN/sapphire. 

 

 

Figure 7 a) Representative emission spectrum at 20 mA and b) 

LI curve of the UVC-LED on the 0.1° offcut AlN/NPSS sample. 
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