285 research outputs found
Distributed Cyber-Attack Detection in the Secondary Control of DC Microgrids
The paper considers the problem of detecting
cyber-attacks occurring in communication networks typically
used in the secondary control layer of DC microgrids. The proposed
distributed methodology allows for scalable monitoring of
a microgrid and is able to detect the presence of data injection
attacks in the communications among Distributed Generation
Units (DGUs) - governed by consensus-based control - and
isolate the communication link over which the attack is injected.
Each local attack detector requires limited knowledge regarding
the dynamics of its neighbors. Detectability properties of the
method are analyzed, as well as a class of undetectable attacks.
Some results from numerical simulation are presented to
demonstrate the effectiveness of the proposed approach
DC-electric-field-induced and low-frequency electromodulation second-harmonic generation spectroscopy of Si(001)-SiO interfaces
The mechanism of DC-Electric-Field-Induced Second-Harmonic (EFISH) generation
at weakly nonlinear buried Si(001)-SiO interfaces is studied experimentally
in planar Si(001)-SiO-Cr MOS structures by optical second-harmonic
generation (SHG) spectroscopy with a tunable Ti:sapphire femtosecond laser. The
spectral dependence of the EFISH contribution near the direct two-photon
transition of silicon is extracted. A systematic phenomenological model of the
EFISH phenomenon, including a detailed description of the space charge region
(SCR) at the semiconductor-dielectric interface in accumulation, depletion, and
inversion regimes, has been developed. The influence of surface quantization
effects, interface states, charge traps in the oxide layer, doping
concentration and oxide thickness on nonlocal screening of the DC-electric
field and on breaking of inversion symmetry in the SCR is considered. The model
describes EFISH generation in the SCR using a Green function formalism which
takes into account all retardation and absorption effects of the fundamental
and second harmonic (SH) waves, optical interference between field-dependent
and field-independent contributions to the SH field and multiple reflection
interference in the SiO layer. Good agreement between the phenomenological
model and our recent and new EFISH spectroscopic results is demonstrated.
Finally, low-frequency electromodulated EFISH is demonstrated as a useful
differential spectroscopic technique for studies of the Si-SiO interface in
silicon-based MOS structures.Comment: 31 pages, 14 figures, 1 table, figures are also available at
http://kali.ilc.msu.su/articles/50/efish.ht
Third‐degree price discrimination in the presence of congestion externality
This paper analyzes third-degree price discrimination of a monopoly airline in the presence of congestion externality when all markets are served. The model features the business-passenger and leisure-passenger markets where business passengers exhibit a higher time valuation, and a less price-elastic demand, than leisure passengers. Our main result is the identification of the time-valuation effect of price discrimination, which can work in the opposite direction as the well-known output effect on welfare. This time-valuation effect clearly explains why discriminating prices can improve welfare even when this is associated with a reduction in aggregate output
Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser
We demonstrate phase-locking of a 2.7-THz metalmetal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier-chain (x2x3x2) from a microwave synthesizer at 15 GHz. Both laser and reference radiations are coupled into a hot electron bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. Spectral analysis of the beat signal (see fig. 1) confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range
Recommended from our members
Mitigation of Moral Hazard and Adverse Selection in Venture Capital Financing: The Influence of the Country’s Institutional Setting
A venture capitalist (VC) needs to trade off benefits and costs when attempting to mitigate agency problems in their investor-investee relationship. We argue that signals of ventures complement the VC’s capacity to screen and conduct a due diligence during the pre-investment phase, but its attractiveness may diminish in institutional settings supporting greater transparency. Similarly, whereas a VC may opt for contractual covenants to curb potential opportunism by ventures in the post-investment phase, this may only be effective in settings supportive of shareholder rights enforcement. Using an international sample of VC contracts, our study finds broad support for these conjectures. It delineates theoretical and practical implications for how investors can best deploy their capital in different institutional settings whilst nurturing their relationships with entrepreneurs
Intestine-Specific, Oral Delivery of Captopril/Montmorillonite: Formulation and Release Kinetics
The intercalation of captopril (CP) into the interlayers of montmorillonite (MMT) affords an intestine-selective drug delivery system that has a captopril-loading capacity of up to ca. 14 %w/w and which exhibits near-zero-order release kinetics
Fertility preservation for male patients with childhood, adolescent, and young adult cancer:recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group
Item does not contain fulltextMale patients with childhood, adolescent, and young adult cancer are at an increased risk for infertility if their treatment adversely affects reproductive organ function. Future fertility is a primary concern of patients and their families. Variations in clinical practice are barriers to the timely implementation of interventions that preserve fertility. As part of the PanCareLIFE Consortium, in collaboration with the International Late Effects of Childhood Cancer Guideline Harmonization Group, we reviewed the current literature and developed a clinical practice guideline for fertility preservation in male patients who are diagnosed with childhood, adolescent, and young adult cancer at age 25 years or younger, including guidance on risk assessment and available methods for fertility preservation. The Grading of Recommendations Assessment, Development and Evaluation methodology was used to grade the available evidence and to form the recommendations. Recognising the need for global consensus, this clinical practice guideline used existing evidence and international expertise to rigorously develop transparent recommendations that are easy to use to facilitate the care of male patients with childhood, adolescent, and young adult cancer who are at high risk of fertility impairment and to enhance their quality of life
Effects of Transmitters and Amyloid-Beta Peptide on Calcium Signals in Rat Cortical Astrocytes: Fura-2AM Measurements and Stochastic Model Simulations
BACKGROUND: To better understand the complex molecular level interactions seen in the pathogenesis of Alzheimer's disease, the results of the wet-lab and clinical studies can be complemented by mathematical models. Astrocytes are known to become reactive in Alzheimer's disease and their ionic equilibrium can be disturbed by interaction of the released and accumulated transmitters, such as serotonin, and peptides, including amyloid- peptides (A). We have here studied the effects of small amounts of A25-35 fragments on the transmitter-induced calcium signals in astrocytes by Fura-2AM fluorescence measurements and running simulations of the detected calcium signals. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular calcium signals were measured in cultured rat cortical astrocytes following additions of serotonin and glutamate, or either of these transmitters together with A25-35. A25-35 increased the number of astrocytes responding to glutamate and exceedingly increased the magnitude of the serotonin-induced calcium signals. In addition to A25-35-induced effects, the contribution of intracellular calcium stores to calcium signaling was tested. When using higher stimulus frequency, the subsequent calcium peaks after the initial peak were of lower amplitude. This may indicate inadequate filling of the intracellular calcium stores between the stimuli. In order to reproduce the experimental findings, a stochastic computational model was introduced. The model takes into account the major mechanisms known to be involved in calcium signaling in astrocytes. Model simulations confirm the principal experimental findings and show the variability typical for experimental measurements. CONCLUSIONS/SIGNIFICANCE: Nanomolar A25-35 alone does not cause persistent change in the basal level of calcium in astrocytes. However, even small amounts of A25-35, together with transmitters, can have substantial synergistic effects on intracellular calcium signals. Computational modeling further helps in understanding the mechanisms associated with intracellular calcium oscillations. Modeling the mechanisms is important, as astrocytes have an essential role in regulating the neuronal microenvironment of the central nervous system
Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons
We report on the generation of coherent phonon polaritons in ZnTe, GaP and
LiTaO using ultrafast optical pulses. These polaritons are coupled modes
consisting of mostly far-infrared radiation and a small phonon component, which
are excited through nonlinear optical processes involving the Raman and the
second-order susceptibilities (difference frequency generation). We probe their
associated hybrid vibrational-electric field, in the THz range, by
electro-optic sampling methods. The measured field patterns agree very well
with calculations for the field due to a distribution of dipoles that follows
the shape and moves with the group velocity of the optical pulses. For a
tightly focused pulse, the pattern is identical to that of classical Cherenkov
radiation by a moving dipole. Results for other shapes and, in particular, for
the planar and transient-grating geometries, are accounted for by a convolution
of the Cherenkov field due to a point dipole with the function describing the
slowly-varying intensity of the pulse. Hence, polariton fields resulting from
pulses of arbitrary shape can be described quantitatively in terms of
expressions for the Cherenkov radiation emitted by an extended source. Using
the Cherenkov approach, we recover the phase-matching conditions that lead to
the selection of specific polariton wavevectors in the planar and transient
grating geometry as well as the Cherenkov angle itself. The formalism can be
easily extended to media exhibiting dispersion in the THz range. Calculations
and experimental data for point-like and planar sources reveal significant
differences between the so-called superluminal and subluminal cases where the
group velocity of the optical pulses is, respectively, above and below the
highest phase velocity in the infrared.Comment: 13 pages, 11 figure
- …