194 research outputs found

    Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Get PDF
    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ~32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene

    Various Spatiotemporal Expression Profiles of Anther-Expressed Genes in Rice

    Get PDF
    The male gametophyte and tapetum play different roles during anther development although they are differentiated from the same cell lineage, the L2 layer. Until now, it has not been possible to delineate their transcriptomes due to technical difficulties in separating the two cell types. In the present study, we characterized the separated transcriptomes of the rice microspore/pollen and tapetum using laser microdissection (LM)-mediated microarray. Spatiotemporal expression patterns of 28,141 anther-expressed genes were classified into 20 clusters, which contained 3,468 (12.3%) anther-enriched genes. In some clusters, synchronous gene expression in the microspore and tapetum at the same developmental stage was observed as a novel characteristic of the anther transcriptome. Noteworthy expression patterns are discussed in connection with gene ontology (GO) categories and gene annotations, which are related to important biological events in anther development, such as pollen maturation, pollen germination, pollen tube elongation and pollen wall formation

    The Transcription Factor PU.1 Regulates Ξ³Ξ΄ T Cell Homeostasis

    Get PDF
    T cell development results in the generation of both mature Ξ±Ξ² and Ξ³Ξ΄ T cells. While Ξ±Ξ² T cells predominate in secondary lymphoid organs, Ξ³Ξ΄ T cells are more abundant in mucosal tissues. PU.1, an Ets family transcription factor, also identified as the spleen focus forming virus proviral integration site-1 (Sfpi1) is essential for early stages of T cell development, but is down regulated during the DN T-cell stage.In this study, we show that in mice specifically lacking PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1(lck-/-)) there are increased numbers of Ξ³Ξ΄ T cells in spleen, thymus and in the intestine when compared to wild-type mice. The increase in Ξ³Ξ΄ T cell numbers in PU.1-deficient mice is consistent in Ξ³Ξ΄ T cell subsets identified by TCR variable regions. PU.1-deficient Ξ³Ξ΄ T cells demonstrate greater proliferation in vivo and in vitro.The increase of Ξ³Ξ΄ T cell numbers in Lck-Cre deleter strains, where deletion occurs after PU.1 expression is diminished, as well as the observation that PU.1-deficient Ξ³Ξ΄ T cells have greater proliferative responses than wild type cells, suggests that PU.1 effects are not developmental but rather at the level of homeostasis. Thus, our data shows that PU.1 has a negative influence on Ξ³Ξ΄ T cell expansion

    Comprehensive Network Analysis of Anther-Expressed Genes in Rice by the Combination of 33 Laser Microdissection and 143 Spatiotemporal Microarrays

    Get PDF
    Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, β€œmeiosis” and β€œpollen wall synthesis”. The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network data presented here is a useful resource for rice researchers to elucidate important and complex biological events

    Gene Organization in Rice Revealed by Full-Length cDNA Mapping and Gene Expression Analysis through Microarray

    Get PDF
    Rice (Oryza sativa L.) is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA) sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE) genes, 33K annotated non-expressed (ANE) genes, and 5.5K non-annotated expressed (NAE) genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6Β years (2010–2015)

    Full text link
    • …
    corecore