16 research outputs found

    Point-of-care C-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in Vietnamese primary health care: a randomised controlled trial

    Get PDF
    Background Inappropriate antibiotic use for acute respiratory tract infections is common in primary health care, but distinguishing serious from self-limiting infections is diffi cult, particularly in low-resource settings. We assessed whether C-reactive protein point-of-care testing can safely reduce antibiotic use in patients with non-severe acute respiratory tract infections in Vietnam. Method We did a multicentre open-label randomised controlled trial in ten primary health-care centres in northern Vietnam. Patients aged 1–65 years with at least one focal and one systemic symptom of acute respiratory tract infection were assigned 1:1 to receive either C-reactive protein point-of-care testing or routine care, following which antibiotic prescribing decisions were made. Patients with severe acute respiratory tract infection were excluded. Enrolled patients were reassessed on day 3, 4, or 5, and on day 14 a structured telephone interview was done blind to the intervention. Randomised assignments were concealed from prescribers and patients but not masked as the test result was used to assist treatment decisions. The primary outcome was antibiotic use within 14 days of follow-up. All analyses were prespecifi ed in the protocol and the statistical analysis plan. All analyses were done on the intention-totreat population and the analysis of the primary endpoint was repeated in the per-protocol population. This trial is registered under number NCT01918579. Findings Between March 17, 2014, and July 3, 2015, 2037 patients (1028 children and 1009 adults) were enrolled and randomised. One adult patient withdrew immediately after randomisation. 1017 patients were assigned to receive C-reactive protein point-of-care testing, and 1019 patients were assigned to receive routine care. 115 patients in the C-reactive protein point-of-care group and 72 patients in the routine care group were excluded in the intention-to-treat analysis due to missing primary endpoint. The number of patients who used antibiotics within 14 days was 581 (64%) of 902 patients in the C-reactive protein group versus 738 (78%) of 947 patients in the control group (odds ratio [OR] 0·49, 95% CI 0·40–0·61; p<0·0001). Highly signifi cant diff erences were seen in both children and adults, with substantial heterogeneity of the intervention eff ect across the 10 sites (I²=84%, 95% CI 66–96). 140 patients in the C-reactive protein group and 137 patients in the routine care group missed the urine test on day 3, 4, or 5. Antibiotic activity in urine on day 3, 4, or 5 was found in 267 (30%) of 877 patients in the C-reactive protein group versus 314 (36%) of 882 patients in the routine treatment group (OR 0·78, 95% CI 0·63–0·95; p=0·015). Time to resolution of symptoms was similar in both groups. Adverse events were rare, with no deaths and a total of 14 hospital admissions (six in the C-reactive protein group and eight in the control group). Interpretation C-reactive protein point-of-care testing reduced antibiotic use for non-severe acute respiratory tract infection without compromising patients’ recovery in primary health care in Vietnam. Health-care providers might have become familiar with the clinical picture of low C-reactive protein, leading to reduction in antibiotic prescribing in both groups, but this would have led to a reduction in observed eff ect, rather than overestimation. Qualitative analysis is needed to address diff erences in context in order to implement this strategy to improve rational antibiotic use for patients with acute respiratory infection in low-income and middle-income countries

    The clinical features of osteogenesis imperfecta in Vietnam

    Get PDF
    Purpose Osteogenesis imperfecta (OI) has not been studied in a Vietnamese population before. The aim of this study was to systematically collect epidemiological information, investigate clinical features and create a clinical database of OI patients in Vietnam for future research and treatment strategy development. Method Participants underwent clinical and physical examinations; also medical records were reviewed. Genealogical information was collected and family members’ phenotypical manifestations recorded. Cases were classified according to the Sillence classification. Results In total, 146 OI patients from 120 families were studied: 46 with OI Type I, 46 with Type III and 54 with Type IV. Almost patients had skeletal deformations. One hundred and forty-two had a history of fractures, 117 blue sclera, 89 dentinogenesis imperfecta and 26 hearing loss. The total number of fractures was 1,932. Thirty-four patients had intra-uterine fractures and nine had perinatal fractures. Surgery was performed 163 times in 58 patients; 100 osteosyntheses and 63 osteotomies. Bisphosphonate treatment was used in 37 patients. The number of affected individuals and predominance of severe forms of OI indicate that the disease is under diagnosed in Vietnam, especially in cases without a family history or with mild form of OI. Deformities appeared in all patients with different severity and localisation, affecting mostly the lower limbs. OI medical and surgical treatment rates are low and in most cases surgery was performed due to fractures. Conclusions Compared to previous studies, our results indicate a lower OI prevalence and greater severity of symptoms in the Vietnamese population when compared with other areas. Further investigation, improved diagnosis and treatment are needed to increase the patients’ quality of life

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    Get PDF
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p&lt;0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p&lt;0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Point-of-care C-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in Vietnamese primary health care: a randomised controlled trial

    No full text
    Background: Inappropriate antibiotic use for acute respiratory tract infections is common in primary health care, but distinguishing serious from self-limiting infections is difficult, particularly in low-resource settings. We assessed whether C-reactive protein point-of-care testing can safely reduce antibiotic use in patients with non-severe acute respiratory tract infections in Vietnam. Method: We did a multicentre open-label randomised controlled trial in ten primary health-care centres in northern Vietnam. Patients aged 1–65 years with at least one focal and one systemic symptom of acute respiratory tract infection were assigned 1:1 to receive either C-reactive protein point-of-care testing or routine care, following which antibiotic prescribing decisions were made. Patients with severe acute respiratory tract infection were excluded. Enrolled patients were reassessed on day 3, 4, or 5, and on day 14 a structured telephone interview was done blind to the intervention. Randomised assignments were concealed from prescribers and patients but not masked as the test result was used to assist treatment decisions. The primary outcome was antibiotic use within 14 days of follow-up. All analyses were prespecified in the protocol and the statistical analysis plan. All analyses were done on the intention-to-treat population and the analysis of the primary endpoint was repeated in the per-protocol population. This trial is registered under number NCT01918579. Findings: Between March 17, 2014, and July 3, 2015, 2037 patients (1028 children and 1009 adults) were enrolled and randomised. One adult patient withdrew immediately after randomisation. 1017 patients were assigned to receive C-reactive protein point-of-care testing, and 1019 patients were assigned to receive routine care. 115 patients in the C-reactive protein point-of-care group and 72 patients in the routine care group were excluded in the intention-to-treat analysis due to missing primary endpoint. The number of patients who used antibiotics within 14 days was 581 (64%) of 902 patients in the C-reactive protein group versus 738 (78%) of 947 patients in the control group (odds ratio [OR] 0·49, 95% CI 0·40–0·61; p<0·0001). Highly significant differences were seen in both children and adults, with substantial heterogeneity of the intervention effect across the 10 sites (I2=84%, 95% CI 66–96). 140 patients in the C-reactive protein group and 137 patients in the routine care group missed the urine test on day 3, 4, or 5. Antibiotic activity in urine on day 3, 4, or 5 was found in 267 (30%) of 877 patients in the C-reactive protein group versus 314 (36%) of 882 patients in the routine treatment group (OR 0·78, 95% CI 0·63–0·95; p=0·015). Time to resolution of symptoms was similar in both groups. Adverse events were rare, with no deaths and a total of 14 hospital admissions (six in the C-reactive protein group and eight in the control group). Interpretation: C-reactive protein point-of-care testing reduced antibiotic use for non-severe acute respiratory tract infection without compromising patients' recovery in primary health care in Vietnam. Health-care providers might have become familiar with the clinical picture of low C-reactive protein, leading to reduction in antibiotic prescribing in both groups, but this would have led to a reduction in observed effect, rather than overestimation. Qualitative analysis is needed to address differences in context in order to implement this strategy to improve rational antibiotic use for patients with acute respiratory infection in low-income and middle-income countries. Funding: Wellcome Trust, UK, and Global Antibiotic Resistance Partnership, USA
    corecore