101 research outputs found

    Old lineage on an old island : Pixibinthus, a new cricket genus endemic to New Caledonia shed light on gryllid diversification in a hotspot of biodiversity

    Get PDF
    Few studies have focused on the early colonization of New Caledonia by insects, after the re-emergence of the main island, 37 Myr ago. Here we investigate the mode and tempo of evolution of a new endemic cricket genus, Pixibinthus, recently discovered in southern New Caledonia. First we formally describe this new monotypic genus found exclusively in the open shrubby vegetation on metalliferous soils, named 'maquis minier', unique to New Caledonia. We then reconstruct a dated molecular phylogeny based on five mitochondrial and four nuclear loci in order to establish relationships of Pixibinthus within Eneopterinae crickets. Pixibinthus is recovered as thesister clade of the endemic genus Agnotecous, mostly rainforest-dwellers. Dating results show that the island colonization by their common ancestor occurred around 34.7 Myr, shortly after New Caledonia re-emergence. Pixibinthus and Agnotecous are then one of the oldest insect lineages documented so far for New Caledonia. This discovery highlights for the first time two clear-cut ecological specializations between sister clades, as Agnotecous is mainly found in rainforests with 19 species, whereas Pixibinthus is found in open habitats with a single documented species. The preference of Pixibinthus for open habitats and of Agnotecous for forest habitats nicely fits an acoustic specialization, either explained by differences in body size or in acoustic properties of their respective habitats. We hypothesize that landscape dynamics, linked to major past climatic events and recent change in fire regimes are possible causes for both present-day low diversity and rarity in genus Pixibinthus. The unique evolutionary history of this old New Caledonian lineage stresses the importance to increase our knowledge on the faunal biodiversity of 'maquis minier', in order to better understand the origin and past dynamics of New Caledonian biota

    Diversity dynamics in New Caledonia: towards the end of the museum model?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The high diversity of New Caledonia has traditionally been seen as a result of its Gondwanan origin, old age and long isolation under stable climatic conditions (the museum model). Under this scenario, we would expect species diversification to follow a constant rate model. Alternatively, if New Caledonia was completely submerged after its breakup from Gondwana, as geological evidence indicates, we would expect species diversification to show a characteristic slowdown over time according to a diversity-dependent model where species accumulation decreases as space is filled.</p> <p>Results</p> <p>We reanalyze available datasets for New Caledonia and reconstruct the phylogenies using standardized methodologies; we use two ultrametrization alternatives; and we take into account phylogenetic uncertainty as well as incomplete taxon sampling when conducting diversification rate constancy tests. Our results indicate that for 8 of the 9 available phylogenies, there is significant evidence for a diversification slowdown. For the youngest group under investigation, the apparent lack of evidence of a significant slowdown could be because we are still observing the early phase of a logistic growth (i.e. the clade may be too young to exhibit a change in diversification rates).</p> <p>Conclusions</p> <p>Our results are consistent with a diversity-dependent model of diversification in New Caledonia. In opposition to the museum model, our results provide additional evidence that original New Caledonian biodiversity was wiped out during the episode of submersion, providing an open and empty space facilitating evolutionary radiations.</p

    Evolutionary diversification of new caledonian Araucaria

    Get PDF
    New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a ‘museum’ for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island for the radiation of the Pacific Araucaria sect. Eutacta clade.Mai Lan Kranitz, Edward Biffin, Alexandra Clark, Michelle L. Hollingsworth, Markus Ruhsam, Martin F. Gardner, Philip Thomas, Robert R. Mill, Richard A. Ennos, Myriam Gaudeul, Andrew J. Lowe, Peter M. Hollingswort

    Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia:Nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species

    Get PDF
    BACKGROUND: New Caledonia harbours a highly diverse and endemic flora, and 13 (out of the 19 worldwide) species of Araucaria are endemic to this territory. Their phylogenetic relationships remain largely unresolved. Using nuclear microsatellites and chloroplast DNA sequencing, we focused on five closely related Araucaria species to investigate among-species relationships and the distribution of within-species genetic diversity across New Caledonia. RESULTS: The species could be clearly distinguished here, except A. montana and A. laubenfelsii that were not differentiated and, at most, form a genetic cline. Given their apparent morphological and ecological similarity, we suggested that these two species may be considered as a single evolutionary unit. We observed cases of nuclear admixture and incongruence between nuclear and chloroplast data, probably explained by introgression and shared ancestral polymorphism. Ancient hybridization was evidenced between A. biramulata and A. laubenfelsii in Mt Do, and is strongly suspected between A. biramulata and A. rulei in Mt Tonta. In both cases, extensive asymmetrical backcrossing eliminated the influence of one parent in the nuclear DNA composition. Shared ancestral polymorphism was also observed for cpDNA, suggesting that species diverged recently, have large effective sizes and/or that cpDNA experienced slow rates of molecular evolution. Within-species genetic structure was pronounced, probably because of low gene flow and significant inbreeding, and appeared clearly influenced by geography. This may be due to survival in distinct refugia during Quaternary climatic oscillations. CONCLUSIONS: The study species probably diverged recently and/or are characterized by a slow rate of cpDNA sequence evolution, and introgression is strongly suspected. Within-species genetic structure is tightly linked with geography. We underline the conservation implications of our results, and highlight several perspectives. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-014-0171-6) contains supplementary material, which is available to authorized users

    Etude floristique et phytog\ue9ographique de la for\ueat scl\ue9rophylle de Nouvelle-Cal\ue9donie

    No full text
    Volume: 15Start Page: 107End Page: 14

    Affinit\ue9s floristiques et consid\ue9rations sur l\u27origine des maquis miniers de la Nouvelle-Cal\ue9donie

    No full text
    Volume: 8Start Page: 133End Page: 18
    corecore