1,370 research outputs found

    Lepton Flavor Violations in High-Scale SUSY with Right-Handed Neutrinos

    Get PDF
    Motivated by the recent discovery of the Higgs boson at m_h = 126 GeV and also by the non-observation of superparticles at the LHC, high-scale SUSY, where the superparticles are as heavy as O(10) TeV, has been recently proposed. We study lepton-flavor violations (LFVs) in the high-scale SUSY with right-handed neutrinos. Even if the slepton masses are of O(10) TeV, the renormalization group (RG) effects on the slepton mass-squared matrix may induce large enough LFVs which are within the reach of future LFV experiments. We also discuss the implication of the right-handed neutrinos on the electroweak symmetry breaking in such a model, and show that the parameter region with the successful electroweak symmetry breaking is enlarged by the RG effects due to the right-handed neutrinos.Comment: 11 pages, 3 figure

    Tau longitudinal polarization in B -> D tau nu and its role in the search for charged Higgs boson

    Full text link
    We study the longitudinal polarization of the tau lepton in B -> D tau nu decay. After discussing possible sensitivities of tau decay modes to the tau polarization, we examine the effect of charged Higgs boson on the tau polarization in B -> D tau nu. We find a relation between the decay rate and the tau polarization, and clarify the role of the tau polarization measurement in the search for the charged Higgs boson.Comment: 17 pages, 3 figures. Tau -> l nu nu is included in Sec. II. Accordingly the title is changed. References are adde

    Determination of phase equilibria in confined systems by open pore cell Monte Carlo method.

    Get PDF
    We present a modification of the molecular dynamics simulation method with a unit pore cell with imaginary gas phase [M. Miyahara, T. Yoshioka, and M. Okazaki, J. Chem. Phys. 106, 8124 (1997)] designed for determination of phase equilibria in nanopores. This new method is based on a Monte Carlo technique and it combines the pore cell, opened to the imaginary gas phase (open pore cell), with a gas cell to measure the equilibrium chemical potential of the confined system. The most striking feature of our new method is that the confined system is steadily led to a thermodynamically stable state by forming concave menisci in the open pore cell. This feature of the open pore cell makes it possible to obtain the equilibrium chemical potential with only a single simulation run, unlike existing simulation methods, which need a number of additional runs. We apply the method to evaluate the equilibrium chemical potentials of confined nitrogen in carbon slit pores and silica cylindrical pores at 77 K, and show that the results are in good agreement with those obtained by two conventional thermodynamic integration methods. Moreover, we also show that the proposed method can be particularly useful for determining vapor-liquid and vapor-solid coexistence curves and the triple point of the confined system

    Electrical Conductivity of Rocks and Dominant Charge Carriers

    Get PDF
    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range

    Scrutiny on Physical Properties of Sawdust From Tropical Commercial Wood Species: Effects of Different Mills and Sawdust's Particle Size

    Full text link
    Physical properties of sawdust (i.e. particle size distribution, particle density, porosity, and water retention) from five tropical commercial wood species (Shorealeprosula, Dryobalanops lanceolata, Dipterocarpus cornutus, Shorea laevis, and Eusideroxylon zwageri) as prepared in various mill types (i.e. handsaw, sawmill, and milling ) were analyzed. This study aims to look into the relationship and interconnected between the use of different mill types, density of wood species origin and physical properties of the resulting sawdust. Generally, different mill types produced sawdust with different particle size distributions. The use of a handsaw produced a higher proportion of oversized particles (OS) and coarser particle size (CPS) than that of sawmill and milling , while also commonly producing the lowest proportion of fine particle size (FPS). For each wood species, the proportion of OS was lower than that of CPS and FPS. In addition, particle density and water retention produced by handsaw in CPS as well as FPS was the smallest, followed in an increasing order sawmill and milling. Porosity of CPS and FPS was the highest in handsaw-cut sawdust, followed in a decreasing order sawmill and milling cut sawdust. This study showed that the different mill types and particle size influenced the physical properties of sawdust. Further, analysis of influential factors on porosity and water retention using General Linear Model revealed that particle density inflicted a strong influence on porosity, as did particle size on water retention

    Dynamical Correlation Functions using the Density Matrix Renormalization Group

    Full text link
    The density matrix renormalization group (DMRG) method allows for very precise calculations of ground state properties in low-dimensional strongly correlated systems. We investigate two methods to expand the DMRG to calculations of dynamical properties. In the Lanczos vector method the DMRG basis is optimized to represent Lanczos vectors, which are then used to calculate the spectra. This method is fast and relatively easy to implement, but the accuracy at higher frequencies is limited. Alternatively, one can optimize the basis to represent a correction vector for a particular frequency. The correction vectors can be used to calculate the dynamical correlation functions at these frequencies with high accuracy. By separately calculating correction vectors at different frequencies, the dynamical correlation functions can be interpolated and pieced together from these results. For systems with open boundaries we discuss how to construct operators for specific wavevectors using filter functions.Comment: minor revision, 10 pages, 15 figure

    Decomposition of meron configuration of SU(2) gauge field

    Full text link
    For the meron configuration of the SU(2) gauge field in the four dimensional Minkowskii spacetime, the decomposition into an isovector field \bn, isoscalar fields ρ\rho and σ\sigma, and a U(1) gauge field CμC_{\mu} is attained by solving the consistency condition for \bn. The resulting \bn turns out to possess two singular points, behave like a monopole-antimonopole pair and reduce to the conventional hedgehog in a special case. The CμC_{\mu} field also possesses singular points, while ρ\rho and σ\sigma are regular everywhere.Comment: 18 pages, 5 figures, Sec.4 rewritten. 5 refs. adde

    Class of exact solutions of the Skyrme and the Faddeev model

    Full text link
    Class of exact solutions of the Skyrme and the Faddeev model are presented. In contrast to previously found solutions, they are produced by the interplay of the two terms in the Lagrangians of the models. They are not solitonic but of wave character. With an appropriate choice of field variables, the field equations of the two models are written in exactly the same form. The solutions supply us with examples of the superposition of two plane waves in nonlinear field theories.Comment: 14 pages, Revtex,Some minor correction

    Universal low-temperature properties of quantum and classical ferromagnetic chains

    Full text link
    We identify the critical theory controlling the universal, low temperature, macroscopic properties of both quantum and classical ferromagnetic chains. The theory is the quantum mechanics of a single rotor. The mapping leads to an efficient method for computing scaling functions to high accuracy.Comment: 4 pages, 2 tables and 3 Postscript figure
    corecore