24 research outputs found

    Investigation of the temporal fluctuations of the 1960–2010 seismicity of Caucasus

    Get PDF
    The time-clustering behaviour of the seismicity of the Caucasus spanning from 1960 to 2010 was investigated. The analysis was performed on the whole and aftershock-depleted catalogues by means of the method of Allan Factor, which permits the identification and quantification of time-clustering in point processes. The whole sequence is featured by two scaling regimes with the scaling exponent at intermediate timescales lower than that at high timescales, and a crossover that could be probably linked with aftershock time activiation. The aftershock-depleted sequence is characterized by higher time-clustering degree and the presence of a periodicity probably correlated with the cyclic earth surface load variations on regional and local scales, e.g. with snow melting in Caucasian mountains and large Enguri dam operations. The obtained results were corroborated by the application of two surrogate methods: the random shuffling and the generation of Poissonian sequences

    Phase synchronization of slip in laboratory slider system

    No full text
    International audienceIn the present study the character of slip regimes in laboratory spring-slider system under weak external periodical forcing has been investigated. We report the experimental evidence of phase synchronization (PS) in a slip dynamics, induced by the external periodic electromagnetic (EM) impact. The quality of synchronization depends on the intensity and frequency of the applied field; the corresponding Arnold's tongue region is constructed. Application of special techniques (measuring phase differences, phase diffusion coefficient, Shannon entropy, Recurrence Quantification Analysis) allows quantitative assessment of the strength of synchronization of microslips with EM impact. It is also shown that the character of power law relationship in acoustic emission amplitude (energy) distribution also undergoes significant changes at changing excitation intensity

    Influence of strong electromagnetic discharges on the dynamics of earthquakes time distribution in the Bishkek test area (Central Asia)

    Get PDF
    From 08/01/1983 to 28/03/1990, at the Bishkek ElectroMagnetic (EM) test site (Northern Tien Shan and Chu Valley area, Central Asia), strong currents, up to 2.5 kA, were released at a 4.5 km long electrical (grounded) dipole. This area is seismically active and a catalogue with about 14100 events from 1975 to 1996 has been analyzed. The seismic catalogue was divided into three parts: 1975-1983 first part with no EM experiments, 1983-1990 second part during EM experiments and 1988-1996 after experiments part. Qualitative and quantitative time series non- linear analysis was applied to waiting times of earthquakes to the above three sub catalogue periods. The qualitative approach includes visual inspection of reconstructed phase space, Iterated Function Systems (IFS) and Recurrence Quantification Analysis (RQA). The quantitative approach followed correlation integral calculation of reconstructed phase space of waiting time distribution, with noise reduction and surrogate testing methods. Moreover the Lempel- Ziv algorithmic complexity measure (LZC) was calculated. General dynamics of earthquakes’ temporal distribution around the test area, reveals properties of low dimensional non linearity. Strong EM discharges lead to the increase in extent of regularity in earthquakes temporal distribution. After cessation of EM experiments the earthquakes’ temporal distribution becomes much more random than before experiments. To avoid non valid conclusions several tests were applied to our data set: differentiation of the time series was applied to check results not affected by non stationarity; the surrogate data approach was followed to reject the hypothesis that dynamics belongs to the colored noise type. Small earthquakes, below completeness threshold, were added to the analysis to check results robustness

    Laboratory study of electromagnetic initiation of slip

    Get PDF
    Recently Russian seismologists reported the triggering effect of MHD soundings on microseismic activity in the Central Asia test area.The paper focuses on an experimental test of the possibility of triggering the mechanical instability of a system that is close to critical state by a series of electromagnetic pulses.The mechanical system consisted of two pieces of rock;the upper piece can slip on the fixed supporting sample if the latter one is tilted up to the critical angle.In this state,the triggering of mechanical instability by some weak impact such as electrical pulse became more probable.The slope of support in the experiment is an analogue of tectonic stress in natural conditions.The preliminary experiments,carried out in a dry environment,at the humidity of atmosphere 30-50%,show that a strong EM-pulse induces sliding of a sample of rock (granite,basalt,labradorite)placed on the supporting sample which is inclined at the slope close to,but less than,the critical angle with a probability 0.07

    Influence of strong electromagnetic discharges on the dynamics of earthquakes time distribution in the Bishkek test area (Central Asia)

    Get PDF
    From 08/01/1983 to 28/03/1990, at the Bishkek ElectroMagnetic (EM) test site (Northern Tien Shan and Chu Val- ley area, Central Asia), strong currents, up to 2.5 kA, were released at a 4.5 km long electrical (grounded) dipole. This area is seismically active and a catalogue with about 14100 events from 1975 to 1996 has been analyzed. The seismic catalogue was divided into three parts: 1975-1983 first part with no EM experiments, 1983-1990 second part during EM experiments and 1988-1996 after experiments part. Qualitative and quantitative time series non- lin- ear analysis was applied to waiting times of earthquakes to the above three sub catalogue periods. The qualitative approach includes visual inspection of reconstructed phase space, Iterated Function Systems (IFS) and Recurrence Quantification Analysis (RQA). The quantitative approach followed correlation integral calculation of reconstruct- ed phase space of waiting time distribution, with noise reduction and surrogate testing methods. Moreover the Lem- pel-Ziv algorithmic complexity measure (LZC) was calculated. General dynamics of earthquakes' temporal distri- bution around the test area, reveals properties of low dimensional non linearity. Strong EM discharges lead to the increase in extent of regularity in earthquakes temporal distribution. After cessation of EM experiments the earth- quakes' temporal distribution becomes much more random than before experiments. To avoid non valid conclusions several tests were applied to our data set: differentiation of the time series was applied to check results not affected by non stationarity; the surrogate data approach was followed to reject the hypothesis that dynamics belongs to the colored noise type. Small earthquakes, below completeness threshold, were added to the analysis to check results robustness

    Nonlinear analysis of magnitude and interevent time interval sequences for earthquakes of the Caucasian region

    No full text
    International audienceIt is well known that lithospheric seismic processes are characterized by self-similarity or scale invariance in terms of earthquake-size, time, space and space-time distributions, although precise details of underlying dynamics are not clear. In this study we apply nonlinear dynamics theory tools, such as a correlation dimension, "surrogate" data analysis and positive Lyapunov exponent calculation, to investigate dynamical characteristics of seismicity in the Caucasian region. Interevent time intervals and magnitude sequences are considered for different area and magnitude windows. We find significant evidence of a low dimensional nonlinear structure of earthquake time distribution, obtained by consideration of time interval sequences between all events encountered, above some threshold magnitude, in the original catalogue. However nonlinear structure is absent in artificially generated sequences of time intervals between independent events as well as time intervals between aftershocks. It seems that this kind of filtration of the original catalogue destroys the existing temporal structure of considered lithospheric processes. Unlike artificial inter-aftershock time interval sequences, obtained by removing independent events from the original series, the time interval sequence between the Racha earthquake aftershocks reveals clear evidence of nonlinear structure. Earthquake magnitude dynamics. for all considered regions and magnitude windows, reveal high dimensional nonlinearity

    Influence of strong electromagnetic discharges on the dynamics of earthquakes time distribution in the Bishkek test area (Central Asia)

    No full text
    From 08/01/1983 to 28/03/1990, at the Bishkek ElectroMagnetic (EM) test site (Northern Tien Shan and Chu Valley area, Central Asia), strong currents, up to 2.5 kA, were released at a 4.5 km long electrical (grounded) dipole. This area is seismically active and a catalogue with about 14100 events from 1975 to 1996 has been analyzed. The seismic catalogue was divided into three parts: 1975-1983 first part with no EM experiments, 1983-1990 second part during EM experiments and 1988-1996 after experiments part. Qualitative and quantitative time series non- linear analysis was applied to waiting times of earthquakes to the above three sub catalogue periods. The qualitative approach includes visual inspection of reconstructed phase space, Iterated Function Systems (IFS) and Recurrence Quantification Analysis (RQA). The quantitative approach followed correlation integral calculation of reconstructed phase space of waiting time distribution, with noise reduction and surrogate testing methods. Moreover the Lempel- Ziv algorithmic complexity measure (LZC) was calculated. General dynamics of earthquakes temporal distribution around the test area, reveals properties of low dimensional non linearity. Strong EM discharges lead to the increase in extent of regularity in earthquakes temporal distribution. After cessation of EM experiments the earthquakes temporal distribution becomes much more random than before experiments. To avoid non valid conclusions several tests were applied to our data set: differentiation of the time series was applied to check results not affected by non stationarity; the surrogate data approach was followed to reject the hypothesis that dynamics belongs to the colored noise type. Small earthquakes, below completeness threshold, were added to the analysis to check results robustness

    The Temporal Analysis of Enguri Dam Datasets

    No full text
    In this research, the results of the analysis of time intervals (waiting times) between events in the seismic catalog around the area of Enguri Dam and foundation displacement data sets were investigated. A statistical approach based on calculating time series helps us to determine the dynamic picture of the research area. Here we have used different nonlinear analysis methods: DFA (Detrend Fluctuation Analysis), and MF-DFA (Multifractal Detrend Fluctuation Analysis). The research aim is to investigate the dynamics of time distribution characteristics of Enguri dam seismic and foundation displacement

    Laboratory study of electromagnetic initiation of slip

    No full text
    Recently Russian seismologists reported the triggering effect of MHD soundings on microseismic activity in the Central Asia test area.The paper focuses on an experimental test of the possibility of triggering the mechanical instability of a system that is close to critical state by a series of electromagnetic pulses.The mechanical system consisted of two pieces of rock;the upper piece can slip on the fixed supporting sample if the latter one is tilted up to the critical angle.In this state,the triggering of mechanical instability by some weak impact such as electrical pulse became more probable.The slope of support in the experiment is an analogue of tectonic stress in natural conditions.The preliminary experiments,carried out in a dry environment,at the humidity of atmosphere 30-50%,show that a strong EM-pulse induces sliding of a sample of rock (granite,basalt,labradorite)placed on the supporting sample which is inclined at the slope close to,but less than,the critical angle with a probability 0.07
    corecore