1,100 research outputs found
Power law behavior for the zigzag transition in a Yukawa cluster
We provide direct experimental evidence that the one-dimensional (1D) to
two-dimensional (2D) zigzag transition in a Yukawa cluster exhibits power law
behavior. Configurations of a six-particle dusty (complex) plasma confined in a
biharmonic potential well are characterized as the well anisotropy is reduced.
When the anisotropy is large the particles are in a 1D straight line
configuration. As the anisotropy is decreased the cluster undergoes a zigzag
transition to a 2D configuration. The measured dependence of cluster width on
anisotropy is well described by a power law. A second transition from the
zigzag to an elliptical configuration is also observed. The results are in very
good agreement with a model for particles interacting through a Yukawa
potential.Comment: 11 pages, 4 figures, 19 references, submitted to Physical Review
Damping of nonlinear standing kink oscillations: a numerical study
We aim to study the standing fundamental kink mode of coronal loops in the
nonlinear regime, investigating the changes in energy evolution in the
cross-section and oscillation amplitude of the loop which are related to
nonlinear effects, in particular to the development of the Kelvin-Helmholtz
instability (KHI). We run idea, high-resolution three-dimensional (3D)
magnetohydrodynamics (MHD) simulations, studying the influence of the initial
velocity amplitude and the inhomogeneous layer thickness. We model the coronal
loop as a straight, homogeneous magnetic flux tube with an outer inhomogeneous
layer, embedded in a straight, homogeneous magnetic field. We find that, for
low amplitudes which do not allow for the KHI to develop during the simulated
time, the damping time agrees with the theory of resonant absorption. However,
for higher amplitudes, the presence of KHI around the oscillating loop can
alter the loop's evolution, resulting in a significantly faster damping than
predicted by the linear theory in some cases. This questions the accuracy of
seismological methods applied to observed damping profiles, based on linear
theory.Comment: 10 pages, 8 figure
Numerical simulations of transverse oscillations in radiatively cooling coronal loops
We aim to study the influence of radiative cooling on the standing kink
oscillations of a coronal loop. Using the FLASH code, we solved the 3D ideal
magnetohydrodynamic equations. Our model consists of a straight, density
enhanced and gravitationally stratified magnetic flux tube. We perturbed the
system initially, leading to a transverse oscillation of the structure, and
followed its evolution for a number of periods. A realistic radiative cooling
is implemented. Results are compared to available analytical theory. We find
that in the linear regime (i.e. low amplitude perturbation and slow cooling)
the obtained period and damping time are in good agreement with theory. The
cooling leads to an amplification of the oscillation amplitude. However, the
difference between the cooling and non-cooling cases is small (around 6% after
6 oscillations). In high amplitude runs with realistic cooling, instabilities
deform the loop, leading to increased damping. In this case, the difference
between cooling and non-cooling is still negligible at around 12%. A set of
simulations with higher density loops are also performed, to explore what
happens when the cooling takes place in a very short time (tcool = 100 s). We
strengthen the results of previous analytical studies that state that the
amplification due to cooling is ineffective, and its influence on the
oscillation characteristics is small, at least for the cases shown here.
Furthermore, the presence of a relatively strong damping in the high amplitude
runs even in the fast cooling case indicates that it is unlikely that cooling
could alone account for the observed, flare-related undamped oscillations of
coronal loops. These results may be significant in the field of coronal
seismology, allowing its application to coronal loop oscillations with observed
fading-out or cooling behaviour
The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin
Synthesis of luminescent europium defects in diamond
© 2014 Macmillan Publishers Limited. All rights reserved. Lanthanides are vital components in lighting, imaging technologies and future quantum memory applications owing to their narrow optical transitions and long spin coherence times. Recently, diamond has become a pre-eminent platform for the realisation of many experiments in quantum information science. Here we demonstrate a promising approach to incorporate Eu ions into diamond, providing a means to harness the exceptional characteristics of both lanthanides and diamond in a single material. Polyelectrolytes are used to electrostatically assemble Eu(III) chelate molecules on diamond and subsequently chemical vapour deposition is employed for the diamond growth. Fluorescence measurements show that the Eu atoms retain the characteristic optical signature of Eu(III) upon incorporation into the diamond lattice. Computational modelling supports the experimental findings, corroborating that Eu(III) in diamond is a stable configuration. The formed defects demonstrate the outstanding chemical control over the incorporation of impurities into diamond enabled by the electrostatic assembly together with chemical vapour deposition growth
3D printing-assisted interphase engineering of polymer composites: Concept and feasibility
We introduced a general concept to create smart, (multi)functional interphases in polymer composites with layered reinforcements, making use of 3D printing. The concept can be adapted for both thermoplastic and thermoset matrix-based composites with either thermoplastic- or thermoset-enriched interphases. We showed feasibility using an example of a composite containing a thermoset matrix/thermoplastic interphase. Carbon fiber unidirectional reinforcing layers were patterned with poly(ε-caprolactone) (PCL) through 3D printing, then infiltrated with an amine-cured epoxy (EP). The corresponding composites were subjected to static and dynamic flexure tests. The PCL-rich interphase markedly improved the ductility in static tests without deteriorating the flexural properties. Its effect was marginal in Charpy impact tests, which can be explained with effects of specimen and PCL pattern sizes. The PCL-rich interphase ensured self-healing when triggered by heat treatment above the melting temperature of PCL
Exact-exchange density-functional calculations for noble-gas solids
The electronic structure of noble-gas solids is calculated within density
functional theory's exact-exchange method (EXX) and compared with the results
from the local-density approximation (LDA). It is shown that the EXX method
does not reproduce the fundamental energy gaps as well as has been reported for
semiconductors. However, the EXX-Kohn-Sham energy gaps for these materials
reproduce about 80 % of the experimental optical gaps. The structural
properties of noble-gas solids are described by the EXX method as poorly as by
the LDA one. This is due to missing Van der Waals interactions in both, LDA and
EXX functionals.Comment: 4 Fig
Cloud-based Wizard of Oz as a service
The paper deals with theoretical and experimental issues of an idea towards a cloud-based Wizard of Oz in the Microsoft Azure cloud environment. Wizard of Oz is a common tool in social robotics and especially in specific applications like mental illness treatment, ambient assisted living, and many others. The final goal is to create a system with the ability to learn and replace a human wizard by an intelligent software agent, which simulates the behavior of the human. � 2015 IEEE
- …
