25 research outputs found
Information retrieval and text mining technologies for chemistry
Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European
Community’s Horizon 2020 Program (project reference:
654021 - OpenMinted). M.K. additionally acknowledges the
Encomienda MINETAD-CNIO as part of the Plan for the
Advancement of Language Technology. O.R. and J.O. thank
the Foundation for Applied Medical Research (FIMA),
University of Navarra (Pamplona, Spain). This work was
partially funded by Consellería
de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic
funding of UID/BIO/04469/2013 unit and COMPETE 2020
(POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi
for useful feedback and discussions during the preparation of
the manuscript.info:eu-repo/semantics/publishedVersio
The CHEMDNER corpus of chemicals and drugs and its annotation principles
The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one
of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large,
manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison
of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000
PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry
literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER
corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was
manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family,
formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was
measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the
CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also
mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention
recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions
from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been
generated as well. We propose a standard for required minimum information about entity annotations for the
construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation
guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus
The CHEMDNER corpus of chemicals and drugs and its annotation principles
Copyright © 2015 Krallinger et al. The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/.The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/