2,888 research outputs found

    Studies on the Mechanisms of Chemical Leukaemogenesis

    Get PDF
    Following a single injection of MNU into “intact” mice, a high incidence of leukaemia (90%) is obtained, with a 50% induction time of 200 days. Immunological studies indicate that the ξ antigen is expressed on the leukaemic cells. Thymectomized MNU treated mice had a 50% induction time of 500 days, and the incidence was somewhat lower. Leukaemias failed to develop in MNU treated T lymphocyte deficient animals and in lethally irradiated, or thymectomized lethally irradiated mice reconstituted with MNU treated bone marrow. It is suggested that the T lymphocytes rather than the haemopoietic stem cells or pre-T cells are the “target cells” in MNU leukaemogenesis

    Malignant myelomonocytic cells after in vitro infection of marrow cells with Friend leukaemia virus.

    Get PDF
    Infection of long-term BDF1 marrow cultures with Friend leukaemia virus complex (FLV) induced transformed cells with myelomonocytic characteristics, which were isolated only 14 days after the viral infection. Criteria for transformation were growth in suspension cultures and high plating efficiency in agar. The lymphatic leukaemia virus (LLV) replicates in these suspension cultures, but the spleen focus-forming virus (SFFV) component of the FLV complex has not been detected. Injection of the transformed cells into syngeneic neonatal or adult mice leads to the development of leukaemia which can be demonstrated to be of donor origin by the presence of two metacentric marker chromosomes which are also seen in the cultured cells

    The Post-Pericenter Evolution of the Galactic Center Source G2

    Full text link
    In early 2014 the fast-moving near-infrared source G2 reached its closest approach to the supermassive black hole Sgr A* in the Galactic Center. We report on the evolution of the ionized gaseous component and the dusty component of G2 immediately after this event, revealed by new observations obtained in 2015 and 2016 with the SINFONI integral field spectrograph and the NACO imager at the ESO VLT. The spatially resolved dynamics of the Brγ\gamma line emission can be accounted for by the ballistic motion and tidal shearing of a test-particle cloud that has followed a highly eccentric Keplerian orbit around the black hole for the last 12 years. The non-detection of a drag force or any strong hydrodynamic interaction with the hot gas in the inner accretion zone limits the ambient density to less than a few 103^3 cm−3^{-3} at the distance of closest approach (1500 RsR_s), assuming G2 is a spherical cloud moving through a stationary and homogeneous atmosphere. The dust continuum emission is unresolved in L'-band, but stays consistent with the location of the Brγ\gamma emission. The total luminosity of the Brγ\gamma and L' emission has remained constant to within the measurement uncertainty. The nature and origin of G2 are likely related to that of the precursor source G1, since their orbital evolution is similar, though not identical. Both object are also likely related to a trailing tail structure, which is continuously connected to G2 over a large range in position and radial velocity.Comment: 17 pages, 12 figures; accepted for publication in Ap

    Pruritus is a common feature in sheep infected with the BSE agent.

    Get PDF
    BACKGROUND: The variability in the clinical or pathological presentation of transmissible spongiform encephalopathies (TSEs) in sheep, such as scrapie and bovine spongiform encephalopathy (BSE), has been attributed to prion protein genotype, strain, breed, clinical duration, dose, route and type of inoculum and the age at infection. The study aimed to describe the clinical signs in sheep infected with the BSE agent throughout its clinical course to determine whether the clinical signs were as variable as described for classical scrapie in sheep. The clinical signs were compared to BSE-negative sheep to assess if disease-specific clinical markers exist. RESULTS: Forty-seven (34%) of 139 sheep, which comprised 123 challenged sheep and 16 undosed controls, were positive for BSE. Affected sheep belonged to five different breeds and three different genotypes (ARQ/ARQ, VRQ/VRQ and AHQ/AHQ). None of the controls or BSE exposed sheep with ARR alleles were positive. Pruritus was present in 41 (87%) BSE positive sheep; the remaining six were judged to be pre-clinically infected. Testing of the response to scratching along the dorsum of a sheep proved to be a good indicator of clinical disease with a test sensitivity of 85% and specificity of 98% and usually coincided with weight loss. Clinical signs that were displayed significantly earlier in BSE positive cases compared to negative cases were behavioural changes, pruritic behaviour, a positive scratch test, alopecia, skin lesions, teeth grinding, tremor, ataxia, loss of weight and loss of body condition. The frequency and severity of each specific clinical sign usually increased with the progression of disease over a period of 16-20 weeks. CONCLUSION: Our results suggest that BSE in sheep presents with relatively uniform clinical signs, with pruritus of increased severity and abnormalities in behaviour or movement as the disease progressed. Based on the studied sheep, these clinical features appear to be independent of breed, affected genotype, dose, route of inoculation and whether BSE was passed into sheep from cattle or from other sheep, suggesting that the clinical phenotype of BSE is influenced by the TSE strain more than by other factors. The clinical phenotype of BSE in the genotypes and breed studied was indistinguishable from that described for classical scrapie cases

    Resonant Energy Exchange between Atoms in Dispersing and Absorbing Surroundings

    Get PDF
    Within the framework of quantization of the macroscopic electromagnetic field, a master equation describing both the resonant dipole-dipole interaction (RDDI) and the resonant atom-field interaction (RAFI) in the presence of dispersing and absorbing macroscopic bodies is derived, with the relevant couplings being expressed in terms of the surroundings-assisted Green tensor. It is shown that under certain conditions the RDDI can be regarded as being governed by an effective Hamiltonian. The theory, which applies to both weak and strong atom-field coupling, is used to study the resonant energy exchange between two (two-level) atoms sharing initially a single excitation. In particular, it is shown that in the regime of weak atom-field coupling there is a time window, where the energy transfer follows a transfer-rate law of the type obtained by ordinary second-order perturbation theory. Finally, the spectrum of the light emitted during the energy transfer is studied and the line splittings are discussed.Comment: 9 pages, 5 figs, Proceedings of ICQO'2002, Raubichi, to appear in Optics and Spectroscop
    • 

    corecore