182 research outputs found

    Using local rural knowledge to enhance STEM learning for gifted and talented students in Australia

    Get PDF
    In order to supply a future Science, Technology, Engineering, and Mathematics (STEM) workforce, Australia needs to engage its most capable and gifted secondary students in quality STEM learning, either within school or through extra-curricular opportunities, so that they will continue into STEM-based tertiary degrees. High-achieving students in rural communities may face additional barriers to STEM learning that can limit their ability to pursue advanced STEM studies and occupations. This small-scale research project sought to explore a group of gifted lower secondary students’ engagement and experiences in a STEM programme designed around a local rural knowledge model as reported by Avery (2013), which uses local knowledge as a vehicle for science learning. This multi-method study was conducted with 26 students years 7 and 8 in a rural school. Information about students’ general science class experiences were collected quantitatively. These experiences contrasted the local rural knowledge programme, where the students worked with an ecologist and experienced science educators to rehabilitate small plots of damaged land close to the school site. Qualitative data were collected throughout the programme to determine its influence on students’ engagement and learning in STEM. The research found that the local rural knowledge model enhanced students’ engagement in STEM learning and they felt that they retained knowledge better as a result of the authentic learning experience. Students also engaged the wider community in the process, leading to broader translation of the STEM learning

    Photo-antagonism of the GABAA receptor

    Get PDF
    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation

    Trans−cis Switching Mechanisms in Proline Analogues and Their Relevance for the Gating of the 5-HT3 Receptor

    Get PDF
    Trans-cis isomerization of a proline peptide bond is a potential mechanism to open the channel of the 5-HT3 receptor. Here, we have used the metadynamics method to theoretically explore such a mechanism. We have determined the free energy surfaces in aqueous solution of a series of dipeptides of proline analogues and evaluated the free energy difference between the cis and trans isomers. These theoretical results were then compared with data from mutagenesis experiments, in which the response of the 5-HT3 receptor was measured when the proline at the apex of the M2-M3 transmembrane domain loop was mutated. The strong correlation between the experimental and the theoretical data supports the existence of a trans-cis proline switch for opening the 5-HT3 receptor ion channel

    Conformational changes in α7 acetylcholine receptors underlying allosteric modulation by divalent cations

    Get PDF
    Allosteric modulation of membrane receptors is a widespread mechanism by which endogenous and exogenous agents regulate receptor function. For example, several members of the nicotinic receptor family are modulated by physiological concentrations of extracellular calcium ions. In this paper, we examined conformational changes underlying this modulation and compare these with changes evoked by ACh. Two sets of residues in the α7 acetylcholine receptor extracellular domain were mutated to cysteine and analyzed by measuring the rates of modification by the thiol-specific reagent 2-aminoethylmethane thiosulfonate. Using Ba2+ as a surrogate for Ca2+, we found a divalent-dependent decrease the modification rates of cysteine substitutions at M37 and M40, residues at which rates were also slowed by ACh. In contrast, Ba2+ had no significant effect at N52C, a residue where ACh increased the rate of modification. Thus divalent modulators cause some but not all of the conformational effects elicited by agonist. Cysteine substitution of either of two glutamates (E44 or E172), thought to participate in the divalent cation binding site, caused a loss of allosteric modulation, yet Ba2+ still had a significant effect on modification rates of these residues. In addition, the effect of Ba2+ at these residues did not appear to be due to direct occlusion. Our data demonstrate that modulation by divalent cations involves substantial conformational changes in the receptor extracellular domain. Our evidence also suggests the modulation occurs via a binding site distinct from one which includes either (or both) of the conserved glutamates at E44 or E172

    Ligand Activation of the Prokaryotic Pentameric Ligand-Gated Ion Channel ELIC

    Get PDF
    While the pentameric ligand-gated ion channel ELIC has recently provided first insight into the architecture of the family at high resolution, its detailed investigation was so far prevented by the fact that activating ligands were unknown. Here we describe a study on the functional characterization of ELIC by electrophysiology and X-ray crystallography. ELIC is activated by a class of primary amines that include the neurotransmitter GABA at high micro- to millimolar concentrations. The ligands bind to a conserved site and evoke currents that slowly desensitize over time. The protein forms cation selective channels with properties that resemble the nicotinic acetylcholine receptor. The high single channel conductance and the comparably simple functional behavior make ELIC an attractive model system to study general mechanisms of ion conduction and gating in this important family of neurotransmitter receptors

    Rational Design of Protein Stability: Effect of (2S,4R)-4-Fluoroproline on the Stability and Folding Pathway of Ubiquitin

    Get PDF
    BACKGROUND: Many strategies have been employed to increase the conformational stability of proteins. The use of 4-substituted proline analogs capable to induce pre-organization in target proteins is an attractive tool to deliver an additional conformational stability without perturbing the overall protein structure. Both, peptides and proteins containing 4-fluorinated proline derivatives can be stabilized by forcing the pyrrolidine ring in its favored puckering conformation. The fluorinated pyrrolidine rings of proline can preferably stabilize either a C(γ)-exo or a C(γ)-endo ring pucker in dependence of proline chirality (4R/4S) in a complex protein structure. To examine whether this rational strategy can be generally used for protein stabilization, we have chosen human ubiquitin as a model protein which contains three proline residues displaying C(γ)-exo puckering. METHODOLOGY/PRINCIPAL FINDINGS: While (2S,4R)-4-fluoroproline ((4R)-FPro) containing ubiquitinin can be expressed in related auxotrophic Escherichia coli strain, all attempts to incorporate (2S,4S)-4-fluoroproline ((4S)-FPro) failed. Our results indicate that (4R)-FPro is favoring the C(γ)-exo conformation present in the wild type structure and stabilizes the protein structure due to a pre-organization effect. This was confirmed by thermal and guanidinium chloride-induced denaturation profile analyses, where we observed an increase in stability of -4.71 kJ·mol(-1) in the case of (4R)-FPro containing ubiquitin ((4R)-FPro-ub) compared to wild type ubiquitin (wt-ub). Expectedly, activity assays revealed that (4R)-FPro-ub retained the full biological activity compared to wt-ub. CONCLUSIONS/SIGNIFICANCE: The results fully confirm the general applicability of incorporating fluoroproline derivatives for improving protein stability. In general, a rational design strategy that enforces the natural occurring proline puckering conformation can be used to stabilize the desired target protein

    Anaesthetic Impairment of Immune Function Is Mediated via GABAA Receptors

    Get PDF
    GABA(A) receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A) receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients.We demonstrate, using RT-PCR, that monocytes express GABA(A) receptors constructed of α1, α4, β2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A) receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A) receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin.Our results show that functional GABA(A) receptors are present on monocytes with properties similar to CNS GABA(A) receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A) receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A) receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life threatening problem

    Approaching the socialist factory and its workforce: considerations from fieldwork in (former) Yugoslavia

    Get PDF
    The socialist factory, as the ‘incubator’ of the new socialist (wo)man, is a productive entry point for the study of socialist modernization and its contradictions. By outlining some theoretical and methodological insights gathered through field-research in factories in former Yugoslavia, we seek to connect the state of labour history in the Balkans to recent breakthroughs made by labour historians of other socialist countries. The first part of this article sketches some of the specificities of the Yugoslav self-managed factory and its heterogeneous workforce. It presents the ambiguous relationship between workers and the factory and demonstrates the variety of life trajectories for workers in Yugoslav state-socialism (from model communists to alienated workers). The second part engages with the available sources for conducting research inside and outside the factory advocating an approach which combines factory and local archives, print media and oral history
    corecore