135 research outputs found

    Position Paper: Secure Infrastructure for Scientific Data Life Cycle Management

    Full text link
    Abstract—Within the Austrian Grid project phase 2, three different groups, each allocated to a different workpackage, join their efforts to implement a grid infrastructure for the european research project “Breath Gas Analysis for molecular oriented diseases”. This position paper provides background on the task and the resulting requirements, a presentation on solutions developed during related projects in the application domain, identifies problems that have not yet been solved, and finally presents the intended solution to be developed. I. INTRODUCTION & CONTEXT This position paper describes the current state, the in-tended realisation and a discussion of the project Grid Breath Gas Analysis (BAMOD-Grid) carried out withi

    Element-specific spin and orbital momentum dynamics of Fe/Gd multilayers

    Get PDF
    The role of orbital magnetism in the laser-induced demagnetization of Fe/Gd multilayers was investigated using time-resolved X-ray magnetic circular dichroism at 2-ps time resolution given by an xray streak camera. An ultrafast transfer of angular momentum from the spin via the orbital momentum to the lattice was observed which was characterized by rapidly thermalizing spin and orbital momenta. Strong interlayer exchange coupling between Fe and Gd led to a simultaneous demagnetization of both layers. 1 Author to whom correspondence should be addressed; electronic mail: [email protected]. 2 Ultrafast magnetic storage and processing is founded on our ability to control magnetism on picosecond and femtosecond time scales. Magnetic phase transitions conserve the total angular momentum and usually involve the crystal lattice as a quasi-infinite reservoir of angular momentum. A prototypical ultrafast magnetic phenomenon is the demagnetization after excitation by an intense laser pulse The Fe/Gd multilayer consists of two metals of very different electronic structure. Fe has exchange-split 3d spin bands which intersect the Fermi surface, allowing both low-energy spin-flip (Stoner) and spin wave excitations (magnons). The spin momentum dominates the total angular momentum while the orbital momentum is quenched by the strong ligand field and only partially restored by the spin-orbit interaction. The coupling of the orbital momentum to the anisotropic ligand field enables the flow of angular momentum from the spin system to the lattice during the demagnetization. A direct photon-driven exchange of spin and orbital momentum as proposed by HĂŒbner 3 Early experiments on Gd suggested a slow laser-induced demagnetization in tens of picoseconds Our experiments were performed on a stack of 20 alternating 0.5-nm Fe and Gd layers grown on top of a 200-nm Al heat sink, protected by a thin Al cap layer, and supported by a 100 nm silicon nitride membrane. At and above room temperature the easy magnetization direction was out-of-plane. The thin layers were antiferromagnetically coupled with a common Curie temperature of about 230°C. In order to separate the transient dynamics of the Fe 3d and Gd 4f spin and orbital momenta in the Fe/Gd multilayer, we extended time-resolved XMCD [12, 13] into a laser pump -x-ray probe technique. XMCD has the unique ability to separate and quantify spin and orbital momenta with element specificity Also, XMCD avoids laser pump-induced state-filling effects since the spin-dependent band occupation is determined by recording the absorption cross-section for circularly polarized x-rays, exciting electrons from a spin-orbit-split core level into the valence states. Integration over the absorption resonances accounts for all unoccupied states. The demagnetization dynamics was initiated by heating the sample above the Curie temperature with 60-fs (full width at half maximum (FWHM)) long 800-nm laser pulses at an intensity of 20 mJ/cm 2 and 5 kHz, and probed with 60-ps (FWHM) x-ray pulses from the elliptically polarizing undulator beamline 4.0 at the Advanced Light Source Two representative streaked x-ray pulses are shown in Starting from the integrated transient Fe L 3,2 and Gd M 4,5 dichroism, the transient spin momentum m s (t) = <S z > and orbital momentum m l (t) = <L z > were determined by using sum rules orbital momentum m l (t) before and after t=0 is zero-within experimental errors-in agreement with our expectation that the Gd 4f demagnetization occurs indirectly via exchange with Gd 5d states. The Fe 3d orbital momentum m l (t) decays simultaneously with the Fe spin momentum m s (t). This can be seen more clearly when 5 m l (t) and m s (t) are normalized to their values before t=0, The ultrafast dynamics in Fe/Gd is a true demagnetization as angular momentum is transferred from spin and orbital momentum to the lattice, which acts as a sink. The demagnetization is not primarily the result of a rearrangement of angular momentum between spin and orbit, which would be visible as a change in the orbital to spin momentum ratio. Note that a partial demagnetization in a non-equilibrium situation may be possible without coupling to the lattice because of the different g-factors of electron spin and orbital momenta. It is clear that the Fe spin-orbit interaction does not constitute a bottleneck in the demagnetization of Fe/Gd because the Fe spin and orbital momenta are in or close to equilibrium. The slow dynamics in Fe/Gd, compared to N

    Element-specific spin and orbital momentum dynamics of Fe/Gdmultilayers

    Get PDF
    The role of orbital magnetism in the laser-induced demagnetization of Fe/Gd multilayers was investigated using time-resolved X-ray magnetic circular dichroism at 2-ps time resolution given by an x-ray streak camera. An ultrafast transfer of angular momentum from the spin via the orbital momentum to the lattice was observed which was characterized by rapidly thermalizing spin and orbital momenta. Strong interlayer exchange coupling between Fe and Gd led to a simultaneous demagnetization of both layers

    ZD6474 reverses multidrug resistance by directly inhibiting the function of P-glycoprotein

    Get PDF
    P-glycoprotein (P-gp) pumps multiple types of drugs out of the cell, using energy generated from ATP, and confers multidrug resistance (MDR) on cancer cells. ZD6474 is an orally active, selective inhibitor of the vascular endothelial growth factor receptor, epidermal growth factor receptor, and rearranged during transfection tyrosine kinases. This study was designed to examine whether ZD6474 reverses P-gp-mediated MDR in cancer cells. Here, we show that clinically achievable levels of ZD6474 reverse P-gp-mediated MDR of the P-gp-overexpressing cell lines derived from breast cancer, MCF-7/adriamycin (ADR), and human oral epidermoid carcinoma, KBV200 to ADR, docetaxel, and vinorelbine. This ability to reverse the P-gp-mediated resistance is comparable to that of another frequently used reversal agent known as verapamil. ZD6474 itself moderately inhibits the proliferation of both MCF-7 and MCF-7/ADR cells with almost equal activity, but its inhibitory effect is not altered by co-incubation with verapamil, suggesting that ZD6474 may not be a substrate of P-gp. In addition, ZD6474 increases the intracellular accumulation of the P-gp substrate, rhodamine-123, and ADR, by enhancing the uptake and/or decreasing the efflux of these compounds in resistant cells. Further studies show that ZD6474 stimulates ATPase activity in a dose-dependent manner, which is required for the proper function of P-gp. In contrast, ZD6474 does not inhibit the expression level of P-gp. Our results suggest that ZD6474 is capable of reversing MDR in cancer cells by directly inhibiting the function of P-gp, a finding that may have clinical implications for ZD6474

    Impact of Crystal Structure and Particles Shape on the Photoluminescence Intensity of CdSe/CdS Core/Shell Nanocrystals

    Get PDF
    To study the influence of the chemical and crystalline composition of core/shell NCs on their photoluminescence (PL) the mean structural profile of a large ensemble of NCs has to be retrieved in atomic resolution. This can be achieved by retrieving the chemical profile of core/shell NCs using anomalous small angle x-ray scattering (ASAXS) in combination with the analysis of powder diffraction data recorded by wide angle x-ray scattering (WAXS). In the current synchrotron based study, we investigate CdSe/CdS core/shell NCs with different core dimensions by recording simultaneously ASAXS and WAXS spectra. The CdS shells are grown epitaxial on nominal spherical CdSe cores with core diameters from around 3.5–5.5 nm. Three different CdSe shell thicknesses are realized by depositing around 4, 6, and 8 monolayers (MLs) of CdSe. We reveal that the epitaxial core/shell structure depicts a chemical sharp interface, even after a post growth annealing step. With increasing NC diameter, however, the CdSe/CdS NCs deviate significantly from a spherical shape. Instead an elliptical particle shape with pronounced surface facets for the larger core/shell NCs is found. In combination with the powder diffraction data we could relate this anisotropic shape to a mixture of crystal phases within the CdSe core. The smallest CdSe cores exhibit a pure hexagonal wurtzite crystal structure, whereas the larger ones also possess a cubic zincblende phase fraction. This mixed crystal phase fractions lead to a non-spherical shell growth with different thicknesses along specific crystallographic directions: The long axes are terminated by basal crystal faces parallel either to the a- or c-axis, the short axes by “tilted” pyramidal planes. By combining these structural data with the measured PL quantum yield values, we can clearly connect the optical output of the NCs to their shape and to their shell thickness. Above 6 ML CdS shell-thickness no further increase of the PL can be observed, but for large aspect ratio values the PL is significantly decreased. The gained understanding of the internal crystal structure on CdSe/CdS NCs is general applicable for a precise tuning of the optical properties of crystalline core/shell NCs

    Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations

    Full text link
    Understanding the statistical properties of recurrence intervals of extreme events is crucial to risk assessment and management of complex systems. The probability distributions and correlations of recurrence intervals for many systems have been extensively investigated. However, the impacts of microscopic rules of a complex system on the macroscopic properties of its recurrence intervals are less studied. In this Letter, we adopt an order-driven stock market model to address this issue for stock returns. We find that the distributions of the scaled recurrence intervals of simulated returns have a power law scaling with stretched exponential cutoff and the intervals possess multifractal nature, which are consistent with empirical results. We further investigate the effects of long memory in the directions (or signs) and relative prices of the order flow on the characteristic quantities of these properties. It is found that the long memory in the order directions (Hurst index HsH_s) has a negligible effect on the interval distributions and the multifractal nature. In contrast, the power-law exponent of the interval distribution increases linearly with respect to the Hurst index HxH_x of the relative prices, and the singularity width of the multifractal nature fluctuates around a constant value when Hx<0.7H_x<0.7 and then increases with HxH_x. No evident effects of HsH_s and HxH_x are found on the long memory of the recurrence intervals. Our results indicate that the nontrivial properties of the recurrence intervals of returns are mainly caused by traders' behaviors of persistently placing new orders around the best bid and ask prices.Comment: 6 EPL pages including 6 figure

    Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    Get PDF
    Acknowledgments We thank Reik V. Donner for inspiring suggestions that initialized the work presented herein. Jan H. Feldhoff is credited for providing us with the STARS simulation data and for his contributions to fruitful discussions. Comments by the anonymous reviewers are gratefully acknowledged as they led to substantial improvements of the manuscript.Peer reviewedPublisher PD

    PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth.

    Get PDF
    BackgroundProgesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms.ResultsWe demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells.ConclusionsAltogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology
    • 

    corecore