10 research outputs found

    Climate change and pathways used by pests as challenges to plant health in agriculture and forestry.

    Get PDF
    Climate change already challenges people?s livelihood globally and it also affects plant health. Rising temperatures facilitate the introduction and establishment of unwanted organisms, including arthropods, pathogens, and weeds (hereafter collectively called pests). For example, a single, unusually warm winter under temperate climatic conditions may be sufficient to assist the establishment of invasive plant pests, which otherwise would not be able to establish. In addition, the increased market globalization and related transport of recent years, coupled with increased temperatures, has led to favorable conditions for pest movement, invasion, and establishment worldwide. Most published studies indicate that, in general, pest risk will increase in agricultural ecosystems under climate-change scenarios, especially in today?s cooler arctic, boreal, temperate, and subtropical regions. This is also mostly true for forestry. Some pests have already expanded their host range or distribution, at least in part due to changes in climate. Examples of these pests, selected according to their relevance in different geographical areas, are summarized here. The main pathways used by them, directly and/or indirectly, are also discussed. Understanding these path-ways can support decisions about mitigation and adaptation measures. The review concludes that preventive mitigation and adaptation measures, including biosecurity, are key to reducing the projected increases in pest risk in agriculture, horticulture, and forestry. Therefore, the sustainable management of pests is urgently needed. It requires holistic solutions, including effective phytosanitary regulations, globally coordinated diagnostic and surveillance systems, pest risk modeling and analysis, and preparedness for pro-active management

    It's not raining men: A mixed-methods study investigating methods of improving male recruitment to health behaviour research

    No full text
    10.1186/s12889-019-7087-4BMC Public Health191814

    It's not raining men: A mixed-methods study investigating methods of improving male recruitment to health behaviour research

    No full text
    Background: Although gender is an important determinant of health behaviour with males less likely to perform health-protective behaviours, samples in health behaviour research are heavily biased towards females. This study investigated the use of online social network, Facebook, to reach and recruit inactive males to a team-based, social, and gamified physical activity randomised controlled trial. Methods: Methodological techniques included a narrative literature review, survey of inactive males (n = 34) who rated advertisement images and text captions on scales of 1-10, and trial Facebook-delivered recruitment campaigns. Advertisement effectiveness was measured by cost-per-click to the study website, number of expressions of interest, and study enrolments from males. Results: Survey results showed that vibrant images of men exercising accompanied by concise captions (< 35 words) were most effective. An advertising campaign incorporating these components achieved a cost-per-click of $0.60, with 80% of n = 50 expressions of interest being from men, a marked improvement from baseline campaigns in which only 11% of expressions of interest were from men. Despite this, men who were recruited through the targeted campaign failed to enrol into the study, primarily due to reluctance to invite friends to join their team. An alternative strategy of encouraging females to invite men boosted male participation from 18% of the sample at baseline to 29% in the targeted recruitment phase. Conclusions: Evidence-based approaches can improve Facebook recruitment outcomes, however, there are complex barriers hindering male recruitment to health behaviour studies that may necessitate multi-faceted strategies including involvement of family and friends. © 2019 The Author(s)

    Insight into Bacterial Phosphotransferase System-Mediated Signaling by Interspecies Transplantation of a Transcriptional Regulator ▿ †

    No full text
    The bacterial sugar:phosphotransferase system (PTS) delivers phosphoryl groups via proteins EI and HPr to the EII sugar transporters. The antitermination protein LicT controls β-glucoside utilization in Bacillus subtilis and belongs to a family of bacterial transcriptional regulators that are antagonistically controlled by PTS-catalyzed phosphorylations at two homologous PTS regulation domains (PRDs). LicT is inhibited by phosphorylation of PRD1, which is mediated by the β-glucoside transporter EIIBgl. Phosphorylation of PRD2 is catalyzed by HPr and stimulates LicT activity. Here, we report that LicT, when artificially expressed in the nonrelated bacterium Escherichia coli, is likewise phosphorylated at both PRDs, but the phosphoryl group donors differ. Surprisingly, E. coli HPr phosphorylates PRD1 rather than PRD2, while the stimulatory phosphorylation of PRD2 is carried out by the HPr homolog NPr. This demonstrates that subtle differences in the interaction surface of HPr can switch its affinities toward the PRDs. NPr transfers phosphoryl groups from EINtr to EIIANtr. Together these proteins form the paralogous PTSNtr, which controls the activity of K+ transporters in response to unknown signals. This is achieved by binding of dephosphorylated EIIANtr to other proteins. We generated LicT mutants that were controlled either negatively by HPr or positively by NPr and were suitable bio-bricks, in order to monitor or to couple gene expression to the phosphorylation states of these two proteins. With the aid of these tools, we identified the stringent starvation protein SspA as a regulator of EIIANtr phosphorylation, indicating that PTSNtr represents a stress-related system in E. coli

    Physicochemical hydrodynamics of droplets out of equilibrium

    Get PDF
    Droplets abound in nature and technology. In general, they are multicomponent, and, when out of equilibrium, have gradients in concentration, implying flow and mass transport. Moreover, phase transitions can occur, in the form of evaporation, solidification, dissolution or nucleation of a new phase. The droplets and their surrounding liquid can be binary, ternary or contain even more components, with several in different phases. Since the early 2000s, rapid advances in experimental and numerical fluid dynamical techniques have enabled major progress in our understanding of the physicochemical hydrodynamics of such droplets, further narrowing the gap from fluid dynamics to chemical engineering and colloid and interfacial science, arriving at a quantitative understanding of multicomponent and multiphase droplet systems far from equilibrium, and aiming towards a one-to-one comparison between experiments and theory or numerics. This Perspective discusses examples of the physicochemical hydrodynamics of droplet systems far from equilibrium and the relevance of such systems for applications

    Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.

    No full text
    The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins

    Physicochemical hydrodynamics of droplets out of equilibrium

    No full text
    corecore