935 research outputs found
On `maximal' poles of zeta functions, roots of b-functions and monodromy Jordan blocks
The main objects of study in this paper are the poles of several local zeta
functions: the Igusa, topological and motivic zeta function associated to a
polynomial or (germ of) holomorphic function in n variables. We are interested
in poles of maximal possible order n. In all known cases (curves,
non-degenerate polynomials) there is at most one pole of maximal order n which
is then given by the log canonical threshold of the function at the
corresponding singular point.
For an isolated singular point we prove that if the log canonical threshold
yields a pole of order n of the corresponding (local) zeta function, then it
induces a root of the Bernstein-Sato polynomial of the given function of
multiplicity n (proving one of the cases of the strongest form of a conjecture
of Igusa-Denef-Loeser). For an arbitrary singular point we show under the same
assumption that the monodromy eigenvalue induced by the pole has a Jordan block
of size n on the (perverse) complex of nearby cycles.Comment: 8 pages, to be published in Journal of Topolog
Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study
Magnetic materials are usually divided into two classes: those with localised
magnetic moments, and those with itinerant charge carriers. We present a
comprehensive experimental (spectroscopic ellipsomerty) and theoretical study
to demonstrate that these two types of magnetism do not only coexist but
complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material
the itinerant charge carriers interact with large localised magnetic moments of
Tb(4f) states, forming complex magnetic lattices at low temperatures, which we
associate with self-organisation of magnetic clusters. The formation of
magnetic clusters results in low-energy optical spectral weight shifts, which
correspond to opening of the pseudogap in the conduction band of the itinerant
charge carriers and development of the low- and high-spin intersite electronic
transitions. This phenomenon, driven by self-trapping of electrons by magnetic
fluctuations, could be common in correlated metals, including besides
Kondo-lattice metals, Fe-based and cuprate superconductors.Comment: 30 pages, 6 Figure
High-Resolution Photoemission Study of MgB2
We have performed high-resolution photoemission spectroscopy on MgB2 and
observed opening of a superconducting gap with a narrow coherent peak. We found
that the superconducting gap is s-like with the gap value of 4.5 meV at 15 K.
The temperature dependence (15 - 40 K) of gap value follows well the BCS form,
suggesting that 2Delta/kBTc at T=0 is about 3. No pseudogap behavior is
observed in the normal state. The present results strongly suggest that MgB2 is
categorized into a phonon-mediated BCS superconductor in the weak-coupling
regime.Comment: 3 pages, 3 figures, accepted in Physical Review Letter
Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212
The superconducting gap - an energy scale tied to the superconducting
phenomena-opens on the Fermi surface at the superconducting transition
temperature (TC) in conventional BCS superconductors. Quite differently, in
underdoped high-TC superconducting cuprates, a pseudogap, whose relation to the
superconducting gap remains a mystery, develops well above TC. Whether the
pseudogap is a distinct phenomenon or the incoherent continuation of the
superconducting gap above TC is one of the central questions in high-TC
research. While some experimental evidence suggests they are distinct, this
issue is still under intense debate. A crucial piece of evidence to firmly
establish this two-gap picture is still missing: a direct and unambiguous
observation of a single-particle gap tied to the superconducting transition as
function of temperature. Here we report the discovery of such an energy gap in
underdoped Bi2212 in the momentum space region overlooked in previous
measurements. Near the diagonal of Cu-O bond direction (nodal direction), we
found a gap which opens at TC and exhibits a canonical (BCS-like) temperature
dependence accompanied by the appearance of the so-called Bogoliubov
quasiparticles, a classical signature of superconductivity. This is in sharp
contrast to the pseudogap near the Cu-O bond direction (antinodal region)
measured in earlier experiments. The emerging two-gap phenomenon points to a
picture of richer quantum configurations in high temperature superconductors.Comment: 16 pages, 4 figures, authors' version Corrected typos in the abstrac
Quasiparticles and Energy Scaling in BiSrCaCuO (=1-3): Angle-Resolved Photoemission Spectroscopy
Angle-resolved photoemission spectroscopy (ARPES) has been performed on the
single- to triple-layered Bi-family high-{\it T} superconductors
(BiSrCaCuO, =1-3). We found a sharp
quasiparticle peak as well as a pseudogap at the Fermi level in the
triple-layered compound. Comparison among three compounds has revealed a
universal rule that the characteristic energies of superconducting and
pseudogap behaviors are scaled with the maximum {\it T}.Comment: 4 pages, 4 figure
Proposal for an Experiment to Test a Theory of High Temperature Superconductors
A theory for the phenomena observed in Copper-Oxide based high temperature
superconducting materials derives an elusive time-reversal and rotational
symmetry breaking order parameter for the observed pseudogap phase ending at a
quantum-critical point near the composition for the highest . An
experiment is proposed to observe such a symmetry breaking. It is shown that
Angle-resolved Photoemission yields a current density which is different for
left and right circularly polarized photons. The magnitude of the effect and
its momentum dependence is estimated. Barring the presence of domains of the
predicted phase an asymmetry of about 0.1 is predicted at low temperatures in
moderately underdoped samples.Comment: latex, 2 figure
Detecting fractions of electrons in the high- cuprates
We propose several tests of the idea that the electron is fractionalized in
the underdoped and undoped cuprates. These include the ac Josephson effect, and
tunneling into small superconducting grains in the Coulomb blockade regime. In
both cases, we argue that the results are qualitatively modified from the
conventional ones if the insulating tunnel barrier is fractionalized. These
experiments directly detect the possible existence of the chargon - a charge
spinless boson - in the insulator. The effects described in this paper
provide a means to probing whether the undoped cuprate (despite it's magnetism)
is fractionalized. Thus, the experiments discussed here are complementary to
the flux-trapping experiment we proposed in our earlier work(cond-mat/0006481).Comment: 7 pages, 5 figure
The electronic specific heat in the pairing pseudogap regime
When pairing correlations in a quasi two dimensional electron system induce a
pseudogap in the single particle density of states, the specific heat must also
contain a sizeable pair contribution. The theoretically calculated specific
heat for such a system is compared to the experimental results of Loram and his
collaborators for underdoped YBa_2Cu_3O_{6+x} and La_{2-x}Sr_{x}CuO_4 samples.
The size and doping dependence of the extracted pseudogap energy scale for both
materials is comparable to the values obtained from a variety of other
experiments.Comment: 4 pages, 5 eps figure
Superconducting properties of the attractive Hubbard model
A self-consistent set of equations for the one-electron self-energy in the
ladder approximation is derived for the attractive Hubbard model in the
superconducting state. The equations provide an extension of a T-matrix
formalism recently used to study the effect of electron correlations on
normal-state properties. An approximation to the set of equations is solved
numerically in the intermediate coupling regime, and the one-particle spectral
functions are found to have four peaks. This feature is traced back to a peak
in the self-energy, which is related to the formation of real-space bound
states. For comparison we extend the moment approach to the superconducting
state and discuss the crossover from the weak (BCS) to the intermediate
coupling regime from the perspective of single-particle spectral densities.Comment: RevTeX format, 8 figures. Accepted for publication in Z.Phys.
- …