638 research outputs found

    Systematically improvable optimized atomic basis sets for {\it ab inito} calculations

    Full text link
    We propose a unique scheme to construct fully optimized atomic basis sets for density-functional calculations. The shapes of the radial functions are optimized by minimizing the {\it spillage} of the wave functions between the atomic orbital calculations and the converged plane wave calculations for dimer systems. The quality of the bases can be systematically improved by increasing the size of the bases within the same framework. The scheme is easy to implement and very flexible. We have done extensive tests of this scheme for wide variety of systems. The results show that the obtained atomic basis sets are very satisfactory for both accuracy and transferability

    Sand burial compensates for the negative effects of erosion on the dune-building shrub Artemisia wudanica

    Get PDF
    Author's manuscript made available in accordance with the publisher's policy.Aims Plant species response to erosion or burial has been extensively studied, but few studies have examined the combined effects of erosion and subsequent burial on plants. In active sand dunes of northern China, Artemisia wudanica falls to the ground following wind erosion, accumulating sand among fallen stems in a process that may facilitate its further growth and development. Therefore, we hypothesize that subsequent sand burial might compensate for the negative effects of erosion in the growth of A. wudanica. Methods A common garden experiment was conducted using A. wudanica seedlings to evaluate their growth in response to different degrees of burial and erosion as observed at the field. Seedlings were selected and randomly assigned to six erosion treatments, two burial treatments, twelve erosion and subsequent burial treatments, and control. Each treatment was replicated six times. Results Compared with the control treatment, total biomass and the relative growth rate of shoots were stimulated in the erosion and subsequent burial treatments (significantly under the 10 cm burial), hampered in erosion only treatments, and were not affected in the burial only treatments. Adventitious roots and ramets were only observed under burial only and erosion and subsequent burial treatments. Conclusions Our results indicate that subsequent sand burial following erosion compensate for the negative effects of erosion on the growth of A. wudanica seedlings, and greatly contributed to their tolerance to wind erosion

    Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine

    Get PDF
    We consider a scheduling problem in which the jobs are generated by two agents and have time-dependent proportional-linear deteriorating processing times. The two agents compete for a common single batching machine to process their jobs, and each agent has its own criterion to optimize. The jobs may have identical or different release dates. The batching machine can process several jobs simultaneously as a batch and the processing time of a batch is equal to the longest of the job processing times in the batch. The problem is to determine a schedule for processing the jobs such that the objective of one agent is minimized, while the objective of the other agent is maintained under a fixed value. For the unbounded model, we consider various combinations of regular objectives on the basis of the compatibility of the two agents. For the bounded model, we consider two different objectives for incompatible and compatible agents: minimizing the makespan of one agent subject to an upper bound on the makespan of the other agent and minimizing the number of tardy jobs of one agent subject to an upper bound on the number of tardy jobs of the other agent. We analyze the computational complexity of various problems by either demonstrating that the problem is intractable or providing an efficient exact algorithm for the problem. Moreover, for certain problems that are shown to be intractable, we provide efficient algorithms for certain special cases

    Revisiting Cardassian Model and Cosmic Constraint

    Full text link
    In this paper, we revisit the Cardassian model in which the radiation energy component is included. It is important for early epoch when the radiation cannot be neglected because the equation of state (EoS) of the effective dark energy becomes time variable. Therefore, it is not equivalent to the quintessence model with a constant EoS anymore. This situation was almost overlooked in the literature. By using the recent released Union2 557 of type Ia supernovae (SN Ia), the baryon acoustic oscillation (BAO) from Sloan Digital Sky Survey and the WiggleZ data points, the full information of cosmic microwave background (CMB) measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observation, we constrain the Cardassian model via the Markov Chain Monte Carlo (MCMC) method. A tight constraint is obtained: n=−0.0479−0.0732−0.148+0.0730+0.142n= -0.0479_{- 0.0732- 0.148}^{+ 0.0730+ 0.142} in 1,2σ1,2\sigma regions. The deviation of Cardassian model from quintessence model is shown in CMB anisotropic power spectra at high l's parts due to the evolution of EoS. But it is about the order of 0.1% which cannot be discriminated by current data sets. The Cardassian model is consistent with current cosmic observational data sets.Comment: 6 pages, 5 figures, match the published versio

    Cosmological Model-independent Gamma-ray Bursts Calibration and its Cosmological Constraint to Dark Energy

    Full text link
    As so far, the redshift of Gamma-ray bursts (GRBs) can extend to z∼8z\sim 8 which makes it as a complementary probe of dark energy to supernova Ia (SN Ia). However, the calibration of GRBs is still a big challenge when they are used to constrain cosmological models. Though, the absolute magnitude of GRBs is still unknown, the slopes of GRBs correlations can be used as a useful constraint to dark energy in a completely cosmological model independent way. In this paper, we follow Wang's model-independent distance measurement method and calculate their values by using 109 GRBs events via the so-called Amati relation. Then, we use the obtained model-independent distances to constrain Λ\LambdaCDM model as an example.Comment: 16 pages, 5 figure

    Observational Constraints to Ricci Dark Energy Model by Using: SN, BAO, OHD, fgas Data Sets

    Full text link
    In this paper, we perform a global constraint on the Ricci dark energy model with both the flat case and the non-flat case, using the Markov Chain Monte Carlo (MCMC) method and the combined observational data from the cluster X-ray gas mass fraction, Supernovae of type Ia (397), baryon acoustic oscillations, current Cosmic Microwave Background, and the observational Hubble function. In the flat model, we obtain the best fit values of the parameters in 1σ,2σ1\sigma, 2\sigma regions: Ωm0=0.2927−0.0323−0.0388+0.0420+0.0542\Omega_{m0}=0.2927^{+0.0420 +0.0542}_{-0.0323 -0.0388}, α=0.3823−0.0418−0.0541+0.0331+0.0415\alpha=0.3823^{+0.0331 +0.0415}_{-0.0418 -0.0541}, Age/Gyr=13.48−0.16−0.21+0.13+0.17Age/Gyr=13.48^{+0.13 +0.17}_{-0.16 -0.21}, H0=69.09−2.37−3.39+2.56+3.09H_0=69.09^{+2.56 +3.09}_{-2.37 -3.39}. In the non-flat model, the best fit parameters are found in 1σ,2σ1\sigma, 2\sigma regions:Ωm0=0.3003−0.0371−0.0423+0.0367+0.0429\Omega_{m0}=0.3003^{+0.0367 +0.0429}_{-0.0371 -0.0423}, α=0.3845−0.0474−0.0523+0.0386+0.0521\alpha=0.3845^{+0.0386 +0.0521}_{-0.0474 -0.0523}, Ωk=0.0240−0.0130−0.0153+0.0109+0.0133\Omega_k=0.0240^{+0.0109 +0.0133}_{-0.0130 -0.0153}, Age/Gyr=12.54−0.37−0.49+0.51+0.65Age/Gyr=12.54^{+0.51 +0.65}_{-0.37 -0.49}, H0=72.89−3.05−3.72+3.31+3.88H_0=72.89^{+3.31 +3.88}_{-3.05 -3.72}. Compared to the constraint results in the ΛCDM\Lambda \textmd{CDM} model by using the same datasets, it is shown that the current combined datasets prefer the ΛCDM\Lambda \textmd{CDM} model to the Ricci dark energy model.Comment: 12 pages, 3 figure

    Causes and consequences of pronounced variation in the isotope composition of plant xylem water

    Get PDF
    Stable isotopologues of water are widely used to derive relative root water uptake (RWU) profiles and average RWU depth in lignified plants. Uniform isotope composition of plant xylem water (delta(xyl)) along the stem length of woody plants is a central assumption of the isotope tracing approach which has never been properly evaluated.Here we evaluate whether strong variation in delta(xyl) within woody plants exists using empirical field observations from French Guiana, northwestern China, and Germany. In addition, supported by a mechanistic plant hydraulic model, we test hypotheses on how variation in delta(xyl) can develop through the effects of diurnal variation in RWU, sap flux density, diffusion, and various other soil and plant parameters on the delta(xyl) of woody plants.The hydrogen and oxygen isotope composition of plant xylem water shows strong temporal (i.e., sub-daily) and spatial (i.e., along the stem) variation ranging up to 25.2 parts per thousand and 6.8 parts per thousand for delta H-2 and delta O-18, respectively, greatly exceeding the measurement error range in all evaluated datasets. Model explorations predict that significant delta(xyl) variation could arise from diurnal RWU fluctuations and vertical soil water heterogeneity. Moreover, significant differences in delta(xyl) emerge between individuals that differ only in sap flux densities or are monitored at different times or heights.This work shows a complex pattern of delta(xyl) transport in the soil-root-xylem system which can be related to the dynamics of RWU by plants. These dynamics complicate the assessment of RWU when using stable water isotopologues but also open new opportunities to study drought responses to environmental drivers. We propose including the monitoring of sap flow and soil matric potential for more robust estimates of average RWU depth and expansion of attainable insights in plant drought strategies and responses
    • …
    corecore