13 research outputs found

    A Parabolised Stability Equation based Broadband Shock-Associated Noise Model

    Get PDF
    International audienceWavepacket models have been used extensively to predict the noise produced from turbulent subsonic and supersonic jets. Such wavepackets, which represent the organised structures of the flow, are solutions to the linearised Navier-Stokes equations. Using a kinematic two-point model, Wong et al. [1] have indicated the importance of incorporating coherence decay in modelling broadband shock-associated noise (BBSAN) in supersonic jets. In this work, we aim to improve the model by using solutions from linear parabolised stability equations (PSE) to model the wavepacket part of the BBSAN source. The two-point coherence of the wavepackets is obtained from large-eddy simulation (LES) data of a M j = 1.5 fully-expanded isothermal supersonic jet [2]. The aim is to build a dynamic sound-source model for BBSAN that would improve on the simplified line-source model proposed by Wong et al. [3]. We find that a frequency dependent coherence decay length scale is important in order to suppress the higher-order harmonic peaks [4] and to obtain the correct BBSAN peak shape. Moderate agreement up to St = 1 was found between the current noise predictions and those from experimental data. I. Nomenclature ω = wavepacket frequency θ = azimuthal coordinate c s n = amplitude coefficient of the shock cells G = Green's function k s = shock-cell wavenumber k h = hydrodynamic wavenumber L = longitudinal extent of wavepacket L c = coherence length of wavepacket m = azimuthal mode number M j = ideally-expanded Mach number r = radial coordinate u s = shock cell velocity fluctuation u t = wavepacket fluctuationŝ u * ω = velocity fluctuations at a frequency ω x = axial coordinat

    Life Quality Impairment Caused by Hookworm-Related Cutaneous Larva Migrans in Resource-Poor Communities in Manaus, Brazil

    Get PDF
    Hookworm-related cutaneous larva migrans (CLM) is a parasitic skin disease common in developing countries with hot climates. In resource-poor settings, CLM is associated with considerable morbidity. The disease is caused by animal hookworm larvae that penetrate the skin and migrate aimlessly in the epidermis as they cannot penetrate the basal membrane. Particularly in the rainy season, the intensity of infection is high with up to 40 larval tracks in an affected individual. Tracks are very itchy and are surrounded by a significant inflammation of the skin. Bacterial superinfection is common and intensifies the inflammation. The psychosocial consequences caused by CLM have never been investigated. We showed that CLM causes skin disease-associated life quality impairment in 91 patients with CLM. Skin disease-associated life quality was significantly impaired. The degree of impairment correlated to the intensity of infection and the number of body areas affected. After treatment with ivermectin, life quality was rapidly restored

    Prevalence and Risk Factors of Hookworm-Related Cutaneous Larva Migrans (HrCLM) in a Resource-Poor Community in Manaus, Brazil

    Get PDF
    Hookworm-related cutaneous larva migrans (HrCLM) is a neglected tropical skin disease associated with significant clinical pathology. Little knowledge exists about prevalence and risk factors of HrCLM in endemic regions. To understand the epidemiology of HrCLM in Amazonia, we conducted a cross-sectional study in a resource-poor township in Manaus, Brazil. HrCLM was diagnosed in 8.2% (95% CI, 6.3-10.1%) of the study population (N = 806) with a peak prevalence of 18.2% (95% CI, 9.3-27.1%) in children aged 10-14. Most of the tracks (62.4%) were located on the feet, and 10.6% were superinfected. HrCLM was associated independently with age under 15, male sex, presence of animal faeces on the compound, walking barefoot on sandy ground and poverty. HrCLM is common in resource-poor communities in Amazonia and is related to poverty. To reduce the disease burden caused by HrCLM, living conditions have to be improved
    corecore