2,344 research outputs found

    Modelling large motion events in fMRI studies of patients with epilepsy

    Get PDF
    EEG-correlated fMRI can provide localisation information on the generators of epileptiform discharges in patients with focal epilepsy. To increase the technique's clinical potential, it is important to consider ways of optimising the yield of each experiment while minimizing the risk of false-positive activation. Head motion can lead to severe image degradation and result in false-positive activation and is usually worse in patients than in healthy subjects. We performed general linear model fMRI data analysis on simultaneous EEG–fMRI data acquired in 34 cases with focal epilepsy. Signal changes associated with large inter-scan motion events (head jerks) were modelled using modified design matrices that include ‘scan nulling’ regressors. We evaluated the efficacy of this approach by mapping the proportion of the brain for which F-tests across the additional regressors were significant. In 95% of cases, there was a significant effect of motion in 50% of the brain or greater; for the scan nulling effect, the proportion was 36%; this effect was predominantly in the neocortex. We conclude that careful consideration of the motion-related effects in fMRI studies of patients with epilepsy is essential and that the proposed approach can be effective

    Nonlinear interferometer for tailoring the frequency spectrum of bright squeezed vacuum

    Full text link
    We propose a method for tailoring the frequency spectrum of bright squeezed vacuum by generating it in a nonlinear interferometer, consisting of two down-converting nonlinear crystals separated by a dispersive medium. Due to a faster dispersive spreading of higher-order Schmidt modes, the spectral width of the radiation at the output is reduced as the length of the dispersive medium is increased. Preliminary results show 30\% spectral narrowing.Comment: 9 pages, 6 figure

    Functional MRI with active, fully implanted, deep brain stimulation systems: Safety and experimental confounds

    Get PDF
    We investigated safety issues and potential experimental confounds when performing functional magnetic resonance imaging (fMRI) investigations in human subjects with fully implanted, active, deep brain stimulation (DBS) systems. Measurements of temperature and induced voltage were performed in an in vitro arrangement simulating bilateral DBS during magnetic resonance imaging (MRI) using head transmit coils in both 1.5 and 3.0 T MRI systems. For MRI sequences typical of an fMRI study with coil-averaged specific absorption rates (SARs) less than 0.4 W/kg, no MRI-induced temperature change greater than the measurement sensitivity (0.1 °C) was detected at 1.5 T, and at 3 T temperature elevations were less than 0.5 °C, i.e. within safe limits. For the purposes of demonstration, MRI pulse sequences with SARs of 1.45 W/kg and 2.34 W/kg (at 1.5 T and 3 T, respectively) were prescribed and elicited temperature increases (> 1 °C) greater than those considered safe for human subjects. Temperature increases were independent of the presence or absence of active stimulator pulsing. At both field strengths during echo planar MRI, the perturbations of DBS equipment performance were sufficiently slight, and temperature increases sufficiently low to suggest that thermal or electromagnetically mediated experimental confounds to fMRI with DBS are unlikely. We conclude that fMRI studies performed in subjects with subcutaneously implanted DBS units can be both safe and free from DBS-specific experimental confounds. Furthermore, fMRI in subjects with fully implanted rather than externalised DBS stimulator units may offer a significant safety advantage. Further studies are required to determine the safety of MRI with DBS for other MRI systems, transmit coil configurations and DBS arrangements

    Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation.

    Get PDF
    Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites

    Healthy Outside-Healthy Inside: The Human Health & Well-being Benefits of Alberta\u27s Protected Areas - towards a benefits-based management agenda

    Get PDF
    This report details the results of an empirical study that examined perceived health and well-being motives and benefits among visitors to a sample of Alberta’s parks and protected areas. The study revealed several major findings with important policy and management implications. First, the human health and well-being benefits that the visitors expected to receive from visits were perceived to be a major personal motivation in the choice to visit Alberta protected areas. The most important motivation factors identified by respondents were psychological and emotional well-being (89.1% of visitors ranked this important), social well-being (88.3%), physical well-being (80.3%), and environmental well-being (79.4%). Second, the perceived benefits that visitors received from their protected areas experiences were substantial. The most frequently reported improvements were related to psychological and emotional (90.5%), social (85%), and physical well-being (77.6%). Interestingly, women perceived greater benefits than men associated with their visit, especially with respect to spiritual, social, and psychological and emotional well-being. Research findings substantiate the need for park agencies to better understand the motivations of visitors representing different social and population subgroups (e.g., youth, elderly, couples, etc.) in order to inform and develop policies and visitor experience programs in support of health and well-being related pursuits. Important policy and management implications for both park managers and health care professionals are highlighted

    Digestibility in selected rainbow trout families and modelling of growth from the specific intake of digestible protein

    Get PDF
    The experiments aimed to clarify variations in digestibility of dietary nutrients in rainbow trout. Furthermore, the objective was to study how differences in digestibility might be related to growth and feed utilisation at various growth rates. When comparing the results from the experiments it appeared that particularly protein digestibility was closely related to specific growth rate and feed conversion ratio at high growth rates. As a tool to visualise the relationship between protein digestibility and growth of rainbow trout a growth model was developed based on the specific intake of digestible protein, and general assumptions on protein content and protein retention efficiency in rainbow trout. The model indicated that increased protein digestibility only partly explained growth increase and that additional factors were important for growth increment

    Hypertriglyceridemic Waist Phenotype Predicts Increased Visceral Fat in Subjects With Type 2 Diabetes

    Get PDF
    OBJECTIVE: Greater accumulation of visceral fat is strongly linked to risk of cardiovascular disease. However, elevated waist circumference by itself does not always identify individuals with increased visceral fat. RESEARCH DESIGN AND METHODS: We examined 375 subjects with type 2 diabetes from the CHICAGO cohort for presence of hypertriglyceridemic waist phenotype (waist circumference >90 cm in men or >85 cm in women, in conjunction with a plasma triglyceride concentration of ≥177 mg/dl) to determine its usefulness for identifying subjects with increased amounts of visceral fat. We divided subjects into three groups: group 1 (low waist circumference and low triglycerides; waist circumference ≤90 cm in men or ≤85 cm in women and triglyceride <177 mg/dl, n = 18), group 2 (high waist circumference and low triglycerides; waist circumference >90 cm in men or >85 cm in women and triglycerides <177 mg/dl, n = 230), and group 3 (high waist circumference and high triglycerides; waist circumference >90 cm in men or >85 cm in women and triglycerides ≥177 mg/dl, n = 127). RESULTS: Subjects in group 3 had significantly higher visceral fat (P < 0.0001), A1C (P < 0.01), and coronary artery calcium (P < 0.05) compared with group 2, despite similar age, BMI, and waist circumference. The relationship of the phenotype to atherosclerosis, however, was attenuated by adjustment for HDL cholesterol, triglyceride-rich lipoprotein cholesterol, apolipoprotein B, or LDL particle number. CONCLUSIONS: The presence of hypertriglyceridemic waist phenotype in subjects with type 2 diabetes identifies a subset with greater degree of visceral adiposity. This subset also has greater degree of subclinical atherosclerosis that may be related to the proatherogenic lipoprotein changes.Takeda Global Research and Development; National Institutes of Health (DK 71711); University of Illinois at Chicag
    corecore