15 research outputs found

    CO2FIX V2.0 : manual of a modeling framework for quantifying carbon sequestration in forest ecosystems and wood products

    Get PDF
    This reports presents a manual of the CO2FIX V 2.0 model. CO2FIX V 2.0 is a simple bookkeeping model that converts volumetric net annual increment data (and additional parameters) to annual carbon stocks and fluxes of the forest ecosystem-soil-wood products chain. It calculates on the hectare scale with time steps of one year. This Version 2.0 is a hectare scale model which was improved on the ability to simulate multi-species and uneven aged stands in multiple cohorts (e.g. selective tropical selective logging systems, and agroforestry systems); the ability to parametrize the growth also by stand density; the ability to deal with inter cohort competition; harvesting, allocation, processing lines, and end-of-life disposal of harvested wood; soil dynamics; the ability to deal with a wider variety of forest types including agro-forestry systems, selective logging systems, and post harvesting mortality; output viewing charts

    European Medicines Agency review of ixazomib (Ninlaro) for the treatment of adult patients with multiple myeloma who have received at least one prior therapy

    Get PDF
    On 21 November 2016, the European Commission issued a marketing authorisation valid throughout the European Union for ixazomib in combination with lenalidomide and dexamethasone for the treatment of adult patients with multiple myeloma who have received at least one prior therapy. Ixazomib was evaluated in one, randomised, double-blind, phase III study comparing ixazomib plus lenalidomide and dexamethasone (n=360; ixazomib arm) versus placebo plus lenalidomide and dexamethasone (n=362; placebo arm) in adult patients with relapsed and/or refractory multiple myeloma who had received at least one prior therapy. The median progression-free survival (PFS) in the intent-to-treat population was 20.6 months in patients treated with ixazomib compared with 14.7 months for patients in the placebo arm (stratified HR=0.742, 95% CI 0.587 to 0.939, stratified p-value=0.012). The most frequently reported adverse reactions (≥20%) within the ixazomib and placebo arms were diarrhoea (42% vs 36%), constipation (34% vs 25%), thrombocytopaenia (28% vs 14%), peripheral neuropathy (28% vs 21%), nausea (26% vs 21%), peripheral oedema (25% vs 18%), vomiting (22% vs 11%) and back pain (21% vs 16%). The scientific review concluded that the gain in PFS of 5.9 months observed with ixazomib was considered clinically meaningful. Concerning the possible uncertainty about the magnitude of the effect, this uncertainty was acceptable given the favourable toxicity profile, and considering that ixazomib is the first agent to allow oral triple combination therapy in this patient population which represents a therapeutic innovation in terms of convenience for patients. Therefore, the benefit-risk for ixazomib in combination with lenalidomide and dexamethasone was considered positive, although the efficacy evidence was not as comprehensive as normally required

    Site-specific analysis of gene expression in early osteoarthritis using the Pond-Nuki model in dogs

    Get PDF
    BACKGROUND: Osteoarthritis (OA) is a progressive and debilitating disease that often develops from a focal lesion and may take years to clinically manifest to a complete loss of joint structure and function. Currently, there is not a cure for OA, but early diagnosis and initiation of treatment may dramatically improve the prognosis and quality of life for affected individuals. This study was designed to determine the feasibility of analyzing changes in gene expression of articular cartilage using the Pond-Nuki model two weeks after ACL-transection in dogs, and to characterize the changes observed at this time point. METHODS: The ACL of four dogs was completely transected arthroscopically, and the contralateral limb was used as the non-operated control. After two weeks the dogs were euthanatized and tissues harvested from the tibial plateau and femoral condyles of both limbs. Two dogs were used for histologic analysis and Mankin scoring. From the other two dogs the surface of the femoral condyle and tibial plateau were divided into four regions each, and tissues were harvested from each region for biochemical (GAG and HP) and gene expression analysis. Significant changes in gene expression were determined using REST-XL, and Mann-Whitney rank sum test was used to analyze biochemical data. Significance was set at (p < 0.05). RESULTS: Significant differences were not observed between ACL-X and control limbs for Mankin scores or GAG and HP tissue content. Further, damage to the tissue was not observed grossly by India ink staining. However, significant changes in gene expression were observed between ACL-X and control tissues from each region analyzed, and indicate that a unique regional gene expression profile for impending ACL-X induced joint pathology may be identified in future studies. CONCLUSION: The data obtained from this study lend credence to the research approach and model for the characterization of OA, and the identification and validation of future diagnostic modalities. Further, the changes observed in this study may reflect the earliest changes in AC reported during the development of OA, and may signify pathologic changes within a stage of disease that is potentially reversible

    Analysis of osteoarthritis in a mouse model of the progeroid human DNA repair syndrome trichothiodystrophy

    Get PDF
    The increasing average age in developed societies is paralleled by an increase in the prevalence of many age-related diseases such as osteoarthritis (OA), which is characterized by deformation of the joint due to cartilage damage and increased turnover of subchondral bone. Consequently, deficiency in DNA repair, often associated with premature aging, may lead to increased pathology of these two tissues. To examine this possibility, we analyzed the bone and cartilage phenotype of male and female knee joints derived from 52- to 104-week-old WT C57Bl/6 and trichothiodystrophy (TTD) mice, who carry a defect in the nucleotide excision repair pathway and display many features of premature aging. Using micro-CT, we found bone loss in all groups of 104-week-old compared to 52-week-old mice. Cartilage damage was mild to moderate in all mice. Surprisingly, female TTD mice had less cartilage damage, proteoglycan depletion, and osteophytosis compared to WT controls. OA severity in males did not significantly differ between genotypes, although TTD males had less osteophytosis. These results indicate that in premature aging TTD mice age-related changes in cartilage were not more severe compared to WT mice, in striking contrast with bone and many other tissues. This segmental aging character may be explained by a difference in vasculature and thereby oxygen load in cartilage and bone. Alternatively, a difference in impact of an anti-aging response, previously found to be triggered by accumulation of DNA damage, might help explain why female mice were protected from cartilage damage. These findings underline the exceptional segmental nature of progeroid conditions and provide an explanation for pro- and anti-aging features occurring in the same individual

    Lifelong voluntary joint loading increases osteoarthritis in mice housing a deletion mutation in type II procollagen gene, and slightly also in non-transgenic mice

    No full text
    Objectives: To investigate the effects of voluntary running on the incidence and severity of osteoarthritis (OA) and associated changes in cartilage matrix and subchondral bone in a transgenic Del1 mouse model for OA. Methods: Del1 mice and their non-transgenic littermate controls were housed from the age of 5–6 weeks to 15 months in individual cages with running wheels. The running activity of each mouse was monitored for the entire 12 month period. Additional Del1 and control mice were housed in individual cages without running wheels. At the end of the experiment the severity of OA was evaluated by light microscopy, and the articular cartilage matrix changes by digital densitometry and quantitative polarised light microscopy. Results: Lifelong voluntary running increased the incidence and severity of OA significantly in Del1 mice (transgenic runners), and slightly also in non-transgenic runners. Severe OA changes increased from 39% in transgenic non-runners to 90% in transgenic runners (p=0.006) in lateral tibial condyles, and from 24% to 80% (p=0.013) in lateral femoral condyles, respectively. The proteoglycan content of articular cartilage was reduced in transgenic runners in comparison with transgenic non-runners (p=0.0167), but a similar effect was not seen in non-transgenic runners compared with non-transgenic non-runners. No attributable differences were seen in the collagen network of articular cartilage or in the subchondral bone between any of the groups. Conclusion: The Del1 mutation has earlier been shown to disturb the assembly of the cartilage collagen network and thereby increase the incidence and severity of OA with age. In this study, voluntary running was shown to increase further cartilage damage in the lateral compartments of the knee. This suggests that articular cartilage in Del1 mice is less resistant to physical loading than in control mice. Despite severe OA lesions in the knee joint at the age of 15 months, Del1 mice continued to run voluntarily 2–3 km every night

    Inactivation of one allele of the type II collagen gene alters the collagen network in murine articular cartilage and makes cartilage softer

    No full text
    OBJECTIVE—To evaluate the influence of inactivation of one allele ("heterozygous knockout" or "heterozygous inactivation") of the type II procollagen gene (Col2a1) on the biomechanical properties and structure of the articular cartilage and subchondral bone in 15( )month old mice.
METHODS—Indentation stiffness of the humerus head articular cartilage was measured by a microindentation method. Cartilage and subchondral bone were prepared for digital densitometry of proteoglycans (PGs), polarised light microscopy (PLM) of collagen, and osteoarthrosis (OA) grading.
RESULTS—Heterozygous inactivation of the Col2a1 gene softened articular cartilage (p=0.002) as measured by indentation stiffness ((mean (SEM) 0.50 (0.07) MPa v 0.94 (0.13) MPa in controls). Fibrillar collagen network exhibited lower birefringence in the intermediate (p=0.04) and deep zones (p=0.01) of cartilage by PLM, indicating either decreased collagen content or a lower degree of fibril parallelism in the knockout mice. The total and zonal thicknesses of articular cartilage were unchanged. Zonal PG contents did not differ significantly. In knockout mice, the prevalence of superficial fibrillation—that is, a sign of OA, was higher than in controls (73% v 21%, p=0.002). The collagen induced birefringence of the superficial zone was not reduced. The subchondral bone volume fraction was lower in knockout mice than in controls, 31% v 43% (p=0.01), and optical retardation values in PLM of bone collagen were slightly but significantly lower (p=0.01).
CONCLUSION—Heterozygous inactivation of the Col2a1 gene made articular cartilage softer, altered the collagenous network, reduced subchondral bone volume, and altered its microstructure. Changes in the cartilage collagen network probably contributed to increased susceptibility to OA.

    corecore