480 research outputs found

    Laser-based strain measurements for high temperature applications

    Get PDF
    The Instrumentation and Control Technology Division at NASA Lewis Research Center has developed a high performance optical strain measurement system for high temperature applications using wires and fibers. The system is based on Yamaguchi's two-beam speckle-shift strain measurement technique. The system automatically calculates surface strains at a rate of 5 Hz using a digital signal processor in a high speed micro-computer. The system is fully automated, and can be operated remotely. This report describes the speckle-shift technique and the latest NASA system design. It also shows low temperature strain test results obtained from small diameter tungsten, silicon carbide, and sapphire specimens. These specimens are of interest due to their roles in composite materials research at NASA Lewis

    Feasibility study for the advanced one-dimensional high temperature optical strain measurement system, phase 3

    Get PDF
    The Instrumentation and Control Technology Division is developing optical strain measurement systems for applications using high temperature wire and fiber specimens. This feasibility study has determined that stable optical signals can be obtained from specimens at temperatures beyond 2,400 C. A system using an area array sensor is proposed to alleviate off-axis decorrelation arising from rigid body motions. A digital signal processor (DSP) is recommended to perform speckle correlations at a rate near the data acquisition rate. Design parameters are discussed, and fundamental limits on the speckle shift strain measurement technique are defined

    Advanced one-dimensional optical strain measurement system, phase 4

    Get PDF
    An improved version of the speckle-shift strain measurement system was developed. The system uses a two-dimensional sensor array to maintain speckle correlation in the presence of large off-axis rigid body motions. A digital signal processor (DSP) is used to calculate strains at a rate near the RS-170 camera frame rate. Strain measurements were demonstrated on small diameter wires and fibers used in composite materials research. Accurate values of Young's modulus were measured on tungsten wires, and silicon carbide and sapphire fibers. This optical technique has measured surface strains at specimen temperatures above 750 C and has shown the potential for measurements at much higher temperatures

    Two-dimensional high temperature optical strain measurement system, phase 2

    Get PDF
    A laser speckle strain measurement system with two-dimensional measurement capabilities has been built and tested for high temperature applications. The 1st and 2nd principle strains at a point on a specimen are calculated from three components of one-dimensional strain. Strain components are detected by cross-correlating reference and shifted speckle patterns recorded before and after straining the specimen. Speckle patterns are recorded by a linear photodiode array camera. Accurate strains have been measured at temperatures up to 650 C. Stable speckle correlations and linear stress-strain relations have been demonstrated up to 750 C. The resolution of the system is 15 microstrains, with a gauge length less than 1 mm

    Optical strain measurement system development

    Get PDF
    A laser speckle, differential strain measurement system has been built and tested for future applications in hostile environments. One-dimensional electronic correlation of speckle pattern movement allows a quasi-real time measure of strain. The system has been used successfully to measure uniaxial strain reaching into plastic deformation of a test specimen, at temperatures ranging to 450 C. A resolution of 16 microstrain is given by the photodiode array sensor pitch and the specimen to sensor separation. The strain measurement error is estimated to be +/-18 microstrain +/-3 percent of the strain reading. The upper temperature limit of the gauge is determined by air density perturbations causing decorrelation of the reference and shifted speckle patterns, and may be improved by limiting convective flow in the immediate vicinity of the test specimen

    Progress in high temperature speckle-shift strain measurement system

    Get PDF
    A fast, easy to use speckle tracking system is under development for the speckle-shift strain measurement technique. Preliminary correlation tests on wire specimens show strong correlations of well-developed speckle patterns. Stable cross-correlations were obtained from a tungsten filament at 2480 C. An analysis of the optical system determines the minimum required sampling frequency of the speckle pattern to be 2.55 pixels per speckle

    Two-dimensional high temperature strain measurement system

    Get PDF
    Two-dimensional optical strain measurements on high temperature test specimens are presented. This two-dimensional capability is implemented through a rotatable sensitive strain axis. Three components of surface strain can be measured automatically, from which the first and second principal strains are calculated. One- and two-dimensional strain measurements at temperatures beyond 750 C with a resolution of 15 microstrain are demonstrated. The system is based on a one-dimensional speckle shift technique. The speckle shift technique makes use of the linear relationship between surface strain and the differential shift of laser speckle patterns in the diffraction plane. Laser speckle is a phase effect that occurs when spatially coherent light interacts with an optically rough surface. Since speckle is generated by any diffusely reflecting surface, no specimen preparation is needed to obtain a good signal. Testing was done at room temperature on a flat specimen of Inconel 600 mounted in a fatigue testing machine. A load cell measured the stress on the specimen before and after acquiring the speckle data. Strain components were measured at 0 C (parallel to the load axis) and at plus or minus 45 C, and plots indicate the calculated values of the first and second principal strains. The measured values of Young's modulus and Poisson's ratio are in good agreement with handbook values. Good linearity of the principal strain moduli at high temperatures indicate precision and stability of the system. However, a systematic error in the high-temperature test setup introduced a scale factor in the slopes of the two-dimensional stress-strain curves. No high temperature effects, however, have been observed to degrade speckle correlation

    Compact Simultaneous-beam Optical Strain Measurement System, Phase 5

    Get PDF
    Recent advances on the laser speckle strain measurement system under development at NASA Lewis Research Center have resulted in a compact, easy-to-use measurement package having many performance improvements over previous systems. NASA has developed this high performance optical strain measurement system for high temperature material testing applications. The system is based on I. Yamaguchi's two-beam speckle-shift strain measurement theory, and uses a new optical design that allows simultaneous recording of laser speckle patterns. This design greatly improves system response over previous implementations of the two-beam speckle-shift technique. The degree of immunity to transient rigid body motions is no longer dependent on the data transfer rate. The system automatically calculates surface strains at a frequency of about 5 Hz using a high speed digital signal processor in a personal computer. This system is fully automated, and can be operated remotely. This report describes the designs and methods used by the system, and shows low temperature strain test results obtained from small diameter tungsten-rhenium and palladium-chrome wires

    The Physics of Hard Spheres Experiment on MSL-1: Required Measurements and Instrument Performance

    Get PDF
    The Physics of HArd Spheres Experiment (PHaSE), one of NASA Lewis Research Center's first major light scattering experiments for microgravity research on complex fluids, flew on board the Space Shuttle's Microgravity Science Laboratory (MSL-1) in 1997. Using colloidal systems of various concentrations of micron-sized plastic spheres in a refractive index-matching fluid as test samples, illuminated by laser light during and after crystallization, investigations were conducted to measure the nucleation and growth rate of colloidal crystals as well as the structure, rheology, and dynamics of the equilibrium crystal. Together, these measurements support an enhanced understanding of the nature of the liquid-to-solid transition. Achievement of the science objectives required an accurate experimental determination of eight fundamental properties for the hard sphere colloidal samples. The instrument design met almost all of the original measurement requirements, but with compromise on the number of samples on which data were taken. The instrument performs 2-D Bragg and low angle scattering from 0.4 deg. to 60 deg., dynamic and single-channel static scattering from 10 deg. to 170 deg., rheology using fiber optics, and white light imaging of the sample. As a result, PHaSE provided a timely microgravity demonstration of critical light scattering measurement techniques and hardware concepts, while generating data already showing promise of interesting new scientific findings in the field of condensed matter physics
    • …
    corecore