3,138 research outputs found

    IT in construction: aligning IT and business strategies

    Get PDF
    The extent to which information technology (IT) infrastructures and strategies are aligned with business processes and strategies varies widely along firms. The objective of this paper is to explain the success or failure of IT in construction firms by focusing on the alignment (or lack of it) between business strategy, IT strategy, organizational infrastructure, and IT infrastructure. It is hypothesized that the ‘fit’ among these elements, the domains of the Strategic Alignment Model, is positively related to the Business Value of IT in Construction. The IT Business Value is evaluated in terms of efficiency, effectiveness and business performance. By applying the Strategic Alignment Model to the Dutch construction industry, it is shown that the inadequate alignment between these domains is a major reason for the modest added business value from IT investments in this industry. The first lack of alignment is the technology shortfall: hence IT contributes in an inadequate way to strategic processes of construction firms. The second lack of alignment is the strategy-shortfall: hence the firm strategy impedes the implementation of IT that could generate a high business value

    Comparison of continuous in situ CO2 observations at Jungfraujoch using two different measurement techniques

    Get PDF
    Since 2004, atmospheric carbon dioxide (CO2) is being measured at the High Altitude Research Station Jungfraujoch by the division of Climate and Environmental Physics at the University of Bern (KUP) using a nondispersive infrared gas analyzer (NDIR) in combination with a paramagnetic O2 analyzer. In January 2010, CO2 measurements based on cavity ring-down spectroscopy (CRDS) as part of the Swiss National Air Pollution Monitoring Network were added by the Swiss Federal Laboratories for Materials Science and Technology (Empa). To ensure a smooth transition – a prerequisite when merging two data sets, e.g., for trend determinations – the two measurement systems run in parallel for several years. Such a long-term intercomparison also allows the identification of potential offsets between the two data sets and the collection of information about the compatibility of the two systems on different time scales. A good agreement of the seasonality, short-term variations and, to a lesser extent mainly due to the short common period, trend calculations is observed. However, the comparison reveals some issues related to the stability of the calibration gases of the KUP system and their assigned CO2 mole fraction. It is possible to adapt an improved calibration strategy based on standard gas determinations, which leads to better agreement between the two data sets. By excluding periods with technical problems and bad calibration gas cylinders, the average hourly difference (CRDS – NDIR) of the two systems is −0.03 ppm ± 0.25 ppm. Although the difference of the two data sets is in line with the compatibility goal of ±0.1 ppm of the World Meteorological Organization (WMO), the standard deviation is still too high. A significant part of this uncertainty originates from the necessity to switch the KUP system frequently (every 12 min) for 6 min from ambient air to a working gas in order to correct short-term variations of the O2 measurement system. Allowing additional time for signal stabilization after switching the sample, an effective data coverage of only one-sixth for the KUP system is achieved while the Empa system has a nearly complete data coverage. Additionally, different internal volumes and flow rates may affect observed differences

    Biofuels - At what cost? Government support for biodiesel in Malaysia

    Get PDF
    One of a series of reports addressing subsidies for biofuels in selected developing countrie

    Local Environment of Ferromagnetically Ordered Mn in Epitaxial InMnAs

    Full text link
    The magnetic properties of the ferromagnetic semiconductor In0.98Mn0.02As were characterized by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The Mn exhibits an atomic-like L2,3 absorption spectrum that indicates that the 3d states are highly localized. In addition, a large dichroism at the Mn L2,3 edge was observed from 5-300 K at an applied field of 2T. A calculated spectrum assuming atomic Mn2+ yields the best agreement with the experimental InMnAs spectrum. A comparison of the dichroism spectra of MnAs and InMnAs show clear differences suggesting that the ferromagnetism observed in InMnAs is not due to hexagonal MnAs clusters. The temperature dependence of the dichroism indicates the presence of two ferromagnetic species, one with a transition temperature of 30 K and another with a transition temperature in excess of 300 K. The dichroism spectra are consistent with the assignment of the low temperature species to random substitutional Mn and the high temperature species to Mn near-neighbor pairs.Comment: 10 pages, 4 figures, accepted by Applied Physics Letter

    Scattering matrices and expansion coefficients of Martian analogue palagonite particles

    Full text link
    We present measurements of ratios of elements of the scattering matrix of Martian analogue palagonite particles for scattering angles ranging from 3 to 174 degrees and a wavelength of 632.8 nm. To facilitate the use of these measurements in radiative transfer calculations we have devised a method that enables us to obtain, from these measurements, a normalized synthetic scattering matrix covering the complete scattering angle range from 0 to 180 degrees. Our method is based on employing the coefficients of the expansions of scattering matrix elements into generalized spherical functions. The synthetic scattering matrix elements and/or the expansion coefficients obtained in this way, can be used to include multiple scattering by these irregularly shaped particles in (polarized) radiative transfer calculations, such as calculations of sunlight that is scattered in the dusty Martian atmosphere.Comment: 34 pages 7 figures 1 tabl

    X-ray absorption branching ratio in actinides: LDA+DMFT approach

    Full text link
    To investigate the x-ray absorption (XAS) branching ratio from the core 4d to valence 5f states, we set up a theoretical framework by using a combination of density functional theory in the local density approximation and Dynamical Mean Field Theory (LDA+DMFT), and apply it to several actinides. The results of the LDA+DMFT reduces to the band limit for itinerant systems and to the atomic limit for localized f electrons, meaning a spectrum of 5f itinerancy can be investigated. Our results provides a consistent and unified view of the XAS branching ratio for all elemental actinides, and is in good overall agreement with experiments.Comment: 6 pages, 4 figure

    5d-5f Electric-multipole Transitions in Uranium Dioxide Probed by Non-resonant Inelastic X-ray Scattering

    Full text link
    Non-resonant inelastic x ray scattering (NIXS) experiments have been performed to probe the 5d-5f electronic transitions at the uranium O(4,5) absorption edges in uranium dioxide. For small values of the scattering vector q, the spectra are dominated by dipole-allowed transitions encapsulated within the giant resonance, whereas for higher values of q the multipolar transitions of rank 3 and 5 give rise to strong and well-defined multiplet structure in the pre-edge region. The origin of the observed non-dipole multiplet structures is explained on the basis of many-electron atomic spectral calculations. The results obtained demonstrate the high potential of NIXS as a bulk-sensitive technique for the characterization of the electronic properties of actinide materials.Comment: Submitted to Physical Review Letters on 31 December 200

    Measuring the added value of IT in construction firms

    Get PDF

    How does star formation proceed in the circumnuclear starburst ring of NGC 6951?

    Full text link
    Gas inflowing along stellar bars is often stalled at the location of circumnuclear rings, that form an effective reservoir for massive star formation and thus shape the central regions of galaxies. However, how exactly star formation is proceeding within these circumnuclear starburst rings is subject of debate. Two main scenarios for this process have been put forward: In the first the onset of star formation is regulated by the total amount of gas present in the ring with star forming starting once a mass threshold has reached in a `random' position within the ring like `popcorn'. In the second star formation preferentially takes place near the locations where the gas enters the ring. This scenario has been dubbed `pearls-on-a-string'. Here we combine new optical IFU data covering the full stellar bar with existing multi-wavelength data to study in detail the 580 pc radius circumnuclear starburst ring in the nearby spiral galaxy NGC 6951. Using HST archival data together with Sauron and Oasis IFU data, we derive the ages and stellar masses of star clusters as well as the total stellar content of the central region. Adding information on the molecular gas distribution, stellar and gaseous dynamics and extinction, we find that the circumnuclear ring in NGC 6951 is ~1-1.5 Gyr old and has been forming stars for most of that time. We see evidence for preferred sites of star formation within the ring, consistent with the `pearls-on-a-string' scenario, when focusing on the youngest stellar populations. Due to the ring's longevity this signature is washed out when older stellar populations are included in the analysis.Comment: accepted for publication in A&A, 15 page
    corecore