275 research outputs found

    Remote sensing of earth terrain

    Get PDF
    Abstracts from 46 refereed journal and conference papers are presented for research on remote sensing of earth terrain. The topics covered related to remote sensing include the following: mathematical models, vegetation cover, sea ice, finite difference theory, electromagnetic waves, polarimetry, neural networks, random media, synthetic aperture radar, electromagnetic bias, and others

    Application of theoretical models to active and passive remote sensing of saline ice

    Get PDF
    The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is employed to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. We also calculate the thermal emissions based on the reciprocity and energy conservation principles. The effects of the random roughness at the air-ice, and ice-water interfaces are accounted for by adding the surface scattering to the volume scattering return incoherently. The above theoretical model, which has been successfully applied to analyze the radar backscatter data of the first-year sea ice near Point Barrow, AK, is used to interpret the measurements performed in the CRRELEX program

    Radiative transfer theory for polarimetric remote sensing of pine forest

    Get PDF
    The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. To take into account the clustered structures with the radiative transfer theory, the scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. Subsequently, the resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including the multi-scale structures, namely, trunks, primary and secondary branches, as well as needles, we interpret and simulate the polarimetric radar responses from pine forest for different frequencies and looking angles. The preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment

    Electrodynamics of Media

    Get PDF
    Contains reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)U.S. Air Force (ESD) Contract F19628-70-C-006

    Remote sensing of Earth terrain

    Get PDF
    Remote sensing of earth terrain is examined. The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The model is used to interpret the measured data for vegetation fields such as rice, wheat, or soybean over water or soil. Accurate calibration of polarimetric radar systems is essential for the polarimetric remote sensing of earth terrain. A polarimetric calibration algorithm using three arbitrary in-scene reflectors is developed. In the interpretation of active and passive microwave remote sensing data from the earth terrain, the random medium model was shown to be quite successful. A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar returns from earth terrain. In the terrain cover classification using the synthetic aperture radar (SAR) images, the applications of the K-distribution model will provide better performance than the conventional Gaussian classifiers. The layered random medium model is used to study the polarimetric response of sea ice. Supervised and unsupervised classification procedures are also developed and applied to synthetic aperture radar polarimetric images in order to identify their various earth terrain components for more than two classes. These classification procedures were applied to San Francisco Bay and Traverse City SAR images

    Electrodynamics of Media

    Get PDF
    Contains research objectives, summary of research and reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300U. S. Army Research Office - Durham (Contract l)AHC04-72-C-0044)California Institute of Technology Contract 953524M.I.T. Sloan Fund for Basic Researc

    Electromagnetic Wave Theory and Remote Sensing

    Get PDF
    Contains reports on seven research projects.Joint Services Electronics Program (Contract DAAG29-78-C-0020)Joint Services Electronics Program (Contract DAAG29-80-C-0104)National Science Foundation (Grant ENG78-23145)National Aeronautics and Space Administration (Contract NAS5-24139)Schlumberger Doll Research CenterU.S. Air Force - Hanscom (Contract F19628-80-C-0052)National Aeronautics and Space Administration (Contract NAG 5-16)Draper Laboratory (Contract DL-H-182642

    Electromagnetic Wave Theory and Remote Sensing

    Get PDF
    Contains reports on six research projects.Joint Services Electronics Program (Contract DAAG29-80-C-0104)National Science Foundation (Grant ENG78-23145)National Science Foundation (Grant ECS82-03390)Schlumberger-Doll Research CenterNational Aeronautics and Space Administration (Contract NAG 5-141)National Aeronautics and Space Administration (Contract NAS5-26861)National Aeronautics and Space Administration (Contract NAG5-270

    Electromagnetic Wave Theory and Remote Sensing

    Get PDF
    Contains reports on seven research projects.Joint Services Electronics Program (Contract DAAG29-80-C-0104)National Science Foundation (Grant ENG 78-23145)Schlumberger-Doll Research CenterU.S. Air Force - Hanscom (Contract F19628-80-C-0052)National Aeronautics and Space Administration (Grant NAG5-16)Draper Laboratory (Contract DL-H-182642)National Aeornautics and Space Administration (Contract NAG5-141

    Electromagnetic Wave Theory and Remote Sensing

    Get PDF
    Contains reports on seven research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)National Science Foundation (Grant ECS82-03390)Schlumberger-Doll Research CenterNational Aeronautics and Space Administration (Contract NAG5-141)National Aeronautics and Space Administration (Contract NAS5-26861)National Aeronautics and Space Administration (Contract NAG5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258
    corecore