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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

The research on interaction of electromagnetic fields with media is pursued (a) to
obtain self-consistent formulations of electrodynamics in the presence of moving and
deforming media, (b) to make theoretical and experimental studies of nonlinear
interactions of electromagnetic fields at optical frequencies, (c) to formulate wave
propagation in bianisotropic media, and (d) to provide the theory for electromagnetic
probing of layered media.

1, Formulation of Macroscopic Electrodynamics

The interface of macroscopic and microscopic electrodynamics of media will be
studied to clarify the macroscopic model.

L. J. Chu, 1I. A. Haus

2. Nonlinear Interactions at Optical Frequencies

The purpose of the work on TEA gas lasers is to obtain short optical pulses and to
use them in the study of nonlinear amplification phenomena. The short pulses of CO 2
radiation obtained by modelocking and cavity dumping will be utilized to measure the
relaxation mechanisms in TEA CO. laser discharges. In particular, we will attempt

to measure the vibrational relaxation time of the asymmetric stretching mode in CO,.

The study of nonlinear optical pulse amplification and pulse shaping will be continued. The
simplified theory developed in the preceding year, describing both the electron distribu-
tion and population of the vibrational levels in a molecular gas discharge, will be applied
to predict efficiency, gain in flowing gas mixtures, and other characteristics of interest.

Work on nonlinear amplification will be performed in high-frequency experiments.
The superradiant gain transitions in TEA noble gas discharges will be studied.

H. A. Haus

3. Subsurface Probing with a Dipole Antenna

Radiation of a dipole antenna in a stratified medium has many applications. Examples
are subsurface probing in geophysics and underground communication. We are
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particularly interested in radiot' requency inte'ferometry depth-sounding technique
which involves a dipole antenna as transmitter and a dipole antenna as receiver. The
receiving antenna measures field intensities as a function of distance and yields an inter-
ference pattern. Using a stratified medium as a model, we are able to identify sub-
surface discontinuities and their electromagnetic properties.

J. A. Kong

4. Microwave Remote Sensing of the Earth

In order to understand microwave emission characteristics of terrestrial surfaces,
theoretical models must be studied as a function of various parameters. Although
modeling of complex structures such as vegetation or porous ice is at best approxi-
mate, we hope that it may be possible to develop mathematical models that are mean-
ingful and computationally tractable. We begin with a simple stratified medium with
planar boundaries, and will use appropriate dielectric constants for computations. The
model will be elaborated to include the effects of scattering centers in the layers
and roughness of the surface.

J. A. Kong, i). H. Staelin

5. Optics of iMedia and Optical Systems

Optical properties of anisotropic media have been extensively studied and applied
to many optical systems. The merg(er of fiber optics and integrated optics offers
promise for future communication systems. Conceptual design of a system and the
system components bill be of inter'est. \Ve propose to study mode characteristics
and wave behavior in anisotropic and( bianisotropic media in the light of their potential
applications in optics. The use of electro-optical and magneto-optical material to make
modulators will also be considered.

J. A. Kong

A. EXPERIMENTS ON A ROOM-TEMPERATURE TEA CO() LASE

Joint Services Electronics Programs (Contract DAAB07-71-C-0300)

T. Holcomb, H. A. Haus

We have reported observations on a room-temperature sealed-off TEA discharge

in He, Xe, and CO. Super'radiant gain \was reported in the neighborhood of 5. 065 pim.

Experiments aimed at reproducing these results on a flowxing He-Ar-Co mixture also

showed a superradiant transition, which became stronger as the partial pressure of CO

decreased (see Section XI-B). "We found that this is an Ar transition, and therefore we

reinvestigated the sealed-off system. W\\e were able to identify the superradiant transi-
,th

tion as not that of CO, but rather the transition at 2. 026 pm of Xe, which passed in 5

order through the spectrometer. Similar behavior has been found with He-Kr and He-Ne

mixtures. Details will be presented in a future report.
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B. PRELIMINARY INVESTIGATION OF A "SUPERRADIANT"

NEUTRAL ARGON LINE IN A TEA LASER

Joint Services Electronics Programs (Contract DAAB07-71-C-0300)

C. T. Ryan

It is well known that the noble gases possess several "superradiant" laser lines in

the infrared when operated in a pulsed longitudinal laser system at fairly low pressures

(10-2-10 Torr) without any mixing gas. '2 Recently, we have been investigating a

"superradiant" line in neutral argon which has been operated at 300 Torr total pressure,

16% argon and 8 4r 0 helium, in a standard pin-resistor TEAY configuration. This particular

line is the 3d(1/2)0 - 4p(3/2)2 transition in argon with a wavelength which was found

to be 1.79 im. This line has been noted in previous experiments for its high output

power in the TEA configuration, but it has not, to our knowledge, been reported to be

"superradiant" in this configuration, nor has the excitation mechanism been explained.

Our present investigation is geared to explaining the excitation mechanism for this tran-

sition.

Our experimental arrangement includes two . 05 LF capacitors in series, charged to

16 kV and discharged through 170 pin-resistor gaps using 1-k Q resistors and a gap of

-2. 5 cm for the discharge length of the filaments. The system is triggered externally

by a spark gap which gives a main current pulse, 1 ps long, and a peak value of 900 A.

An overshoot with a peak value of 120 A and a duration of 1 vps is also produced. When

the system is operated with one totally reflecting gold flat mirror, the laser pulse occurs

when the main current pulse initially reaches -400 A, at a time -. 15 vs after the onset

of the current pulse. The laser pulse duration is -. 1 ps. The short duration of the laser

pulse compared with the current pulse can be explained by the fact that the lower laser

level (J=2) is not coupled to the 3p 6 1S 0 (J=0) ground state of argon through a dipole inter-

action. Thus rapid buildup of the lower laser level population destroys the inversion.

Using these conditions and an estimate of the filament radii as 2 mm, we calculated-1l -

E/p = 8 V cmn1 Torr-1 and pd = 1200 Torr mm. From this we obtained an electron den-13 -3

sity of 8 x 101 3 cm-3 during the laser pulse. We could not show positively whether the

ionization mechanism is primarily Penning ionization of the argon by helium metastables

or direct electron impact. Calculations seemed to indicate that the primary effect

should be direct electron impact ionization of the argon to yield a calculated electron

temperature of approximately 2 eV. This is inconsistent, however, with our measured

output vs pressure data which, under "superradiant" conditions, call for a maximum

argon percentage of 30%T. With a second mirror, laser action can be sustained up to a

maximum of 35% argon, although at much lower output. This would seem to suggest that

the helium plays a vital role in determining either the discharge parameters or the
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excitation mechanism.

We are continuing the investigation using primarily the normal "nonsuperradiant"

laser. In this configuration, laser action occurs immediately at the onset of the current

pulse and has a duration of -. 4 js. After this main laser pulse subsides, a small, sharp

secondary spike in the lasing action appears at the onset of the overshoot. The second-

ary spike is approximately 3r% of the peak output of the main laser pulse and the duration

is only . 1 ks. At the end of the overshoot, a third pulse of similar peak intensity is

observed but decays with a time constant of 1 Vs. This lasing action after the main pulse

may give some more clues to the nature of the excitation mechanism.
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