1,062 research outputs found

    Analysis of indoor environment and performance of net-zero energy building with vacuum glazed windows

    Get PDF
    The total energy and indoor thermal environment of an office building, which aims at the net-zero energy building, were measured and analysed. The annual total primary energy consumption of ‘Measurement’ was smaller than the value of ‘Calculation’ at design phase and achieved net-zero. The result of analysis of the thermal environment shows that the comfortable thermal environment was maintained. Also, the insulation performance and heat balance of the vacuum glazed windows in winter was evaluated. The overall heat transfer coefficients calculated by using the monitoring data were almost equal to the rated overall heat transfer coefficient and the high insulation performance of vacuum glazed windows was maintained even in the second year’s operation. In addition, the amount of heat gain due to solar radiation on the window surface was much larger than the amount of heat loss due to transmission. The vacuum glazed windows with high thermal insulation performance on the south side can reduce the heating load and contribute to the achievement of net-zero in the buildings

    Potential Role of Protein Kinase B in Insulin-induced Glucose Transport, Glycogen Synthesis, and Protein Synthesis

    Get PDF
    Various biological responses stimulated by insulin have been thought to be regulated by phosphatidylinosi-tol 3-kinase, including glucose transport, glycogen syn-thesis, and protein synthesis. However, the molecular link between phosphatidylinositol 3-kinase and these biological responses has been poorly understood. Re-cently, it has been shown that protein kinase B (PKB/c-Akt/ Rac) lies immediately downstream from phosphati-dylinositol 3-kinase. Here, we show that expression of a constitutively active form of PKB induced glucose up-take, glycogen synthesis, and protein synthesis in L6 myotubes downstream of phosphatidylinositol 3-kinase and independent of Ras and mitogen-activated protein kinase activation. Introduction of constitutively active PKB induced glucose uptake and protein synthesis but not glycogen synthesis in 3T3L-1 adipocytes, which lack expression of glycogen synthase kinase 3 different from L6 myotubes. Furthermore, we show that deactivation of glycogen synthase kinase 3 and activation of rapamy-cin- sensitive serine/threonine kinase by PKB in L6 myo-tubes might be involved in the enhancement of glycogen synthesis and protein synthesis, respectively. These re-sults suggest that PKB acts as a key enzyme linking phosphatidylinositol 3-kinase activation to multiple bi-ological functions of insulin through regulation of downstream kinases in skeletal muscle, a major target tissue of insulin

    Lower Cardiorenal Risk with Sodium-Glucose Cotransporter-2 Inhibitors versus Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Patients without Cardiovascular and Renal Diseases: A large multinational observational study

    Get PDF
    BACKGROUND: We compared new use of sodium-glucose cotransporter-2 inhibitor (SGLT2i) vs. dipeptidyl peptidase-4 inhibitor (DPP4i) and the risk of cardiorenal disease, heart failure (HF) or chronic kidney disease (CKD), in type 2 diabetes patients without history of prevalent cardiovascular and renal disease, defined as cardiovascular- and renal disease (CVRD) free, managed in routine clinical practice. METHODS: In this observational cohort study, patients were identified in electronic health records in England, Germany, Japan, Norway, South Korea and Sweden, from 2012 to 2018. A total of 1 006 577 CVRD-free new users of SGLT2i or DPP4i were propensity score matched 1:1. Unadjusted Cox regression was used to estimate hazard ratios (HRs) for outcomes; cardiorenal disease, HF, CKD, stroke, myocardial infarction (MI) cardiovascular- and all-cause death. RESULTS: Baseline characteristics were well-balanced between the treatment groups (n = 105 130 in each group) with total follow up of 187 955 patient years. Patients were mean 56 years, 43% women and indexed between 2013 and 2018. The most commonly used agents were dapagliflozin (91.7% of exposure time) and sitagliptin/linagliptin (55.0%), in the SGLT2i and DPP4i groups respectively. SGLT2i was associated with lower risk of cardiorenal disease, HF, CKD, all-cause- and cardiovascular death; HR (95% CI) 0.56 (0.42-0.74), 0.71 (0.59-0.86), 0.44 (0.28-0.69), 0.67 (0.59-0.77) and 0.61 (0.44-0.85) respectively. No differences were observed for stroke (0.87 [0.69-1.09]) and MI (0.94 [0.80-1.11]). CONCLUSION: In this multinational observational study, SGLT2i was associated with lower risk of heart failure and chronic kidney disease versus DPP4i in T2D patients otherwise free from both cardiovascular and renal disease

    Gremlin Enhances the Determined Path to Cardiomyogenesis

    Get PDF
    BACKGROUND: The critical event in heart formation is commitment of mesodermal cells to a cardiomyogenic fate, and cardiac fate determination is regulated by a series of cytokines. Bone morphogenetic proteins (BMPs) and fibroblast growth factors have been shown to be involved in this process, however additional factors needs to be identified for the fate determination, especially at the early stage of cardiomyogenic development. METHODOLOGY/PRINCIPAL FINDINGS: Global gene expression analysis using a series of human cells with a cardiomyogenic potential suggested Gremlin (Grem1) is a candidate gene responsible for in vitro cardiomyogenic differentiation. Grem1, a known BMP antagonist, enhanced DMSO-induced cardiomyogenesis of P19CL6 embryonal carcinoma cells (CL6 cells) 10-35 fold in an area of beating differentiated cardiomyocytes. The Grem1 action was most effective at the early differentiation stage when CL6 cells were destined to cardiomyogenesis, and was mediated through inhibition of BMP2. Furthermore, BMP2 inhibited Wnt/beta-catenin signaling that promoted CL6 cardiomyogenesis. CONCLUSIONS/SIGNIFICANCE: Grem1 enhances the determined path to cardiomyogenesis in a stage-specific manner, and inhibition of the BMP signaling pathway is involved in initial determination of Grem1-promoted cardiomyogenesis. Our results shed new light on renewal of the cardiovascular system using Grem1 in human

    LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA.

    Get PDF
    The DExD/H box RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene-5 (mda-5) sense viral RNA in the cytoplasm of infected cells and activate signal transduction pathways that trigger the production of type I interferons (IFNs). Laboratory of genetics and physiology 2 (LGP2) is thought to influence IFN production by regulating the activity of RIG-I and mda-5, although its mechanism of action is not known and its function is controversial. Here we show that expression of LGP2 potentiates IFN induction by polyinosinic-polycytidylic acid [poly(I:C)], commonly used as a synthetic mimic of viral dsRNA, and that this is particularly significant at limited levels of the inducer. The observed enhancement is mediated through co-operation with mda-5, which depends upon LGP2 for maximal activation in response to poly(I:C). This co-operation is dependent upon dsRNA binding by LGP2, and the presence of helicase domain IV, both of which are required for LGP2 to interact with mda-5. In contrast, although RIG-I can also be activated by poly(I:C), LGP2 does not have the ability to enhance IFN induction by RIG-I, and instead acts as an inhibitor of RIG-I-dependent poly(I:C) signaling. Thus the level of LGP2 expression is a critical factor in determining the cellular sensitivity to induction by dsRNA, and this may be important for rapid activation of the IFN response at early times post-infection when the levels of inducer are low

    Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger

    Get PDF
    Bradykinin (BK) is produced and acts at the site of injury and inflammation. In the CNS, migration of microglia toward the lesion site plays an important role pathologically. In the present study, we investigated the effect of BK on microglial migration. Increased motility of cultured microglia was mimicked by B1 receptor agonists and markedly inhibited by a B1 antagonist but not by a B2 receptor antagonist. BK induced chemotaxis in microglia isolated from wild-type and B2-knock-out mice but not from B1-knock-out mice. BK-induced motility was not blocked by pertussis toxin but was blocked by chelating intracellular Ca2+ or by low extracellular Ca2+, implying that Ca2+ influx is prerequisite. Blocking the reverse mode of Na+/Ca2+ exchanger (NCX) completely inhibited BK-induced migration. The involvement of NCX was further confirmed by using NCX+/- mice; B1-agonist-induced motility and chemotaxis was decreased compared with that in NCX+/+ mice. Activation of NCX seemed to be dependent on protein kinase C and phosphoinositide 3-kinase, and resultant activation of intermediate-conductance (IK-type) Ca2+-dependent K+ currents (I(K(Ca))) was activated. Despite these effects, BK did not activate microglia, as judged from OX6 staining. Using in vivo lesion models and pharmacological injection to the brain, it was shown that microglial accumulation around the lesion was also dependent on B1 receptors and I(K(Ca)). These observations support the view that BK functions as a chemoattractant by using the distinct signal pathways in the brain and, thus, attracts microglia to the lesion site in vivo

    Impaired Cellular Responses to Cytosolic DNA or Infection with Listeria monocytogenes and Vaccinia Virus in the Absence of the Murine LGP2 Protein

    Get PDF
    Innate immune signaling is crucial for detection of and the initial response to microbial pathogens. Evidence is provided indicating that LGP2, a DEXH box domain protein related to the RNA recognition receptors RIG-I and MDA5, participates in the cellular response to cytosolic double-stranded DNA (dsDNA). Analysis of embryonic fibroblasts and macrophages from mice harboring targeted disruption in the LGP2 gene reveals that LGP2 can act as a positive regulator of type I IFN and anti-microbial gene expression in response to transfected dsDNA. Results indicate that infection of LGP2-deficient mice with an intracellular bacterial pathogen, Listeria monocytogenes, leads to reduced levels of type I IFN and IL12, and allows increased bacterial growth in infected animals, resulting in greater colonization of both spleen and liver. Responses to infection with vaccinia virus, a dsDNA virus, are also suppressed in cells lacking LGP2, reinforcing the ability of LGP2 to act as a positive regulator of antiviral signaling. In vitro mechanistic studies indicate that purified LGP2 protein does not bind DNA but instead mediates these responses indirectly. Data suggest that LGP2 may be acting downstream of the intracellular RNA polymerase III pathway to activate anti-microbial signaling. Together, these findings demonstrate a regulatory role for LGP2 in the response to cytosolic DNA, an intracellular bacterial pathogen, and a DNA virus, and provide a plausible mechanistic hypothesis as the basis for this activity

    Long-Term Survival of Resected Advanced Gastric Cancer with Hepatic and Pancreatic Invasion

    Get PDF
    A 64-year-old man was transferred to our division with a suspicion of gastric cancer. Computed tomography showed widespread irregular thickening of the stomach walls close to the liver and pancreas. Gastrointestinal fiberscopy showed a type 5 tumor in the upper to lower stomach, histologically diagnosed as tubular adenocarcinoma. Gastric cancer with hepatic and pancreatic invasion was diagnosed. Distant metastasis was not proven and complete resection was planned. At laparotomy, the tumor showed general expanding growth and invasion through the lateral segment of the liver and pancreas. Total gastrectomy and combined resection of the distal pancreas, spleen and left segment of the liver were performed. Hepatic and pancreatic invasion and lymph node metastasis were microscopically proven. Pancreatic fistula occurred postoperatively. On postoperative days 40, he was discharged. He received two cycles of adjuvant tegafur/gimeracil/oteracil chemotherapy. He has had no sign of recurrence for 7 years and 8 months

    Involvement of concentrative nucleoside transporter 1 in intestinal absorption of trifluorothymidine, a novel antitumor nucleoside, in rats

    Get PDF
    there is little information regarding TFT absorption. Therefore, we investigated TFT absorption in the rat small intestine. After oral administration of TFT in rats, more than 75% of the TFT was absorbed. To identify the uptake transport system, uptake studies were conducted by using everted sacs prepared from rat small intestines. TFT uptake was saturable, significantly reduced under Na + -free conditions, and strongly inhibited by the addition of an endogenous pyrimidine nucleoside. From these results, we suggested the involvement of concentrative nucleoside transporters (CNTs) in TFT absorption into rat small intestine. In rat small intestines, the mRNAs coding for rat CNT1 (rCNT1) and rCNT2, but not for rCNT3, were predominantly expressed. To investigate the roles of rCNT1 and rCNT2 in TFT uptake, we conducted uptake assays by using Xenopus laevis oocytes injected with rCNT1 complementary RNA (cRNA) and rCNT2 cRNA. TFT uptake by Xenopus oocytes injected with rCNT1 cRNA, and not rCNT2 cRNA, was significantly greater than that by JPET#186296 5 water-injected oocytes. Additionally, in situ single-pass perfusion experiments performed using rat jejunum regions showed that thymidine, a substrate for CNT1, strongly inhibited TFT uptake. In conclusion, TFT is absorbed via rCNT1 in the intestinal lumen in rats
    • …
    corecore