29 research outputs found

    In silico evolution of diauxic growth

    Get PDF
    The glucose effect is a well known phenomenon whereby cells, when presented with two different nutrients, show a diauxic growth pattern, i.e. an episode of exponential growth followed by a lag phase of reduced growth followed by a second phase of exponential growth. Diauxic growth is usually thought of as a an adaptation to maximise biomass production in an environment offering two or more carbon sources. While diauxic growth has been studied widely both experimentally and theoretically, the hypothesis that diauxic growth is a strategy to increase overall growth has remained an unconfirmed conjecture. Here, we present a minimal mathematical model of a bacterial nutrient uptake system and metabolism. We subject this model to artificial evolution to test under which conditions diauxic growth evolves. As a result, we find that, indeed, sequential uptake of nutrients emerges if there is competition for nutrients and the metabolism/uptake system is capacity limited. However, we also find that diauxic growth is a secondary effect of this system and that the speed-up of nutrient uptake is a much larger effect. Notably, this speed-up of nutrient uptake coincides with an overall reduction of efficiency. Our two main conclusions are: (i) Cells competing for the same nutrients evolve rapid but inefficient growth dynamics. (ii) In the deterministic models we use here no substantial lag-phase evolves. This suggests that the lag-phase is a consequence of stochastic gene expression

    The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate

    Get PDF
    Bi-phasic or diauxic growth is often observed when microbes are grown in a chemically defined medium containing two sugars (for example glucose and lactose). Typically, the two growth stages are separated by an often lengthy phase of arrested growth, the so-called lag-phase. Diauxic growth is usually interpreted as an adaptation to maximise population growth in multi-nutrient environments. However, the lag-phase implies a substantial loss of growth during the switch-over. It therefore remains unexplained why the lag-phase is adaptive. Here we show by means of a stochastic simulation model based on the bacterial PTS system that it is not possible to shorten the lag-phase without incurring a permanent growth-penalty. Mechanistically, this is due to the inherent and well established limitations of biological sensors to operate efficiently at a given resource cost. Hence, there is a trade-off between lost growth during the diauxic switch and the long-term growth potential of the cell. Using simulated evolution we predict that the lag-phase will evolve depending on the distribution of conditions experienced during adaptation. In environments where switching is less frequently required, the lag-phase will evolve to be longer whereas, in frequently changing environments, the lag-phase will evolve to be shorter

    Metabolic Network Expansion with Answer Set Programming

    No full text
    Abstract. We propose a qualitative approach to elaborating the biosynthetic capacities of metabolic networks. In fact, large-scale metabolic networks as well as measured datasets suffer from substantial incompleteness. Moreover, traditional formal approaches to biosynthesis require kinetic information, which is rarely available. Our approach builds upon a formal method for analyzing largescale metabolic networks. Mapping its principles into Answer Set Programming (ASP) allows us to address various biologically relevant problems. In particular, our approach benefits from the intrinsic incompleteness-tolerating capacities of ASP. Our approach is indorsed by recent complexity results, showing that the reconstruction of metabolic networks and related problems are NP-hard.

    BIODEGRADATION OF ACRYLIC PAINTS: PROCESS MODELLING OF BIOCIDE EFFECT ON BIOMASS GROWTH AT DIFFERENT TEMPERATURES

    No full text
    Abstract Acrylic paint, notwithstanding the attention paid during the production process, couldbe contaminated by bacteria. This is a consequence of microbiological residuals on the can, resulting in the alterationof paint characteristics. It is therefore necessary to provide an in-canpreservation of the paint by using a biocide.In this paper, the evolution of an in-can system, using a thermo-fluid dynamic model is presented; as a biocide, 2-methyl-4-isothiazolin-3-one, commercially known as MIT,was considered. The model was implemented on gPROMSsoftware and it was possible to determine the inhibitory concentration of the biocideinorder to guarantee both the protection of the can and the protection of thecover phase. To develop the model, kinetic parameters have been found by fitting available literature experimental data. As far as the thermodynamical parameters, theequilibrium between liquid and vapor phases was described bythe NRTLmodel (ASPEN Plus). The model has been validated through a comparison with experimental literature results using MIT alone and a mixture of biocides (MIT/BIT). The main results are that,at the maximum allowable concentration (100 ppm as imposed by law), the MIT biocide is able to protectthe paint for long periods, even when the temperature varies cyclically from 10 to 40°C

    Improving bioreactor cultivation conditions for sensitive cell lines by dynamic membrane aeration

    No full text
    Although the importance of animal cell culture for the industrial (large scale) production of pharmaceutical products is continuously increasing, the sensibility of the cells towards their cultivation environment is still a challenging issue. In comparison to microbial cultures, cell cultures which are not protected by a cell wall are much more sensitive to shear stress and foam formation. Reactor design as well as the selection of ‘robust’ cell lines is particularly important for these circumstances. Nevertheless, even ‘sensitive’ cell lines are selected for certain pharmaceutical processes due to various reasons. These sensitive cell lines have even higher requirements regarding their cultivation environment. Important characteristics for the corresponding reactor design are a high (volumetric) gas mass transfer coefficient, low volumetric power input, low shear stress, low susceptibility to bio-fouling, the ability to cultivate sticky cells and sufficient mixing properties. Membrane aeration has been a long-known possibility to meet some of these requirements, but has not often been applied in recent years. The reasons lie mainly in low gas mass transfer rates, a limited installable volume-specific membrane surface area, restrictions in scalability and problems with membrane fouling. The dynamic membrane aeration bioreactor aeration is a simple concept for bubble-free oxygen supply of such sensitive cultures. It overcomes limitations and draw-backs of previous systems. Consisting of an oscillating, centrally arranged rotor (stirrer) that is wrapped with silicone membrane tubing, it enables doubling the gas mass transfer at the same shear stress in the investigated cultivation scales of 12, 20, 100, and 200 L. Continuous cultivation at these scales allows the same product output as fed-batch cultivation does at tremendously larger reactor volumes. Apart from introducing this novel technology, the presentation comprises selected cultivation results obtained for blood coagulation factor VIII in continuous mode and a therapeutic monoclonal antibody in fed-batch mode in comparison to reference trials
    corecore