8 research outputs found

    Temporal changes in Plasmodium falciparum anti-malarial drug sensitivity in vitro and resistance-associated genetic mutations in isolates from Papua New Guinea

    Get PDF
    Background: In northern Papua New Guinea (PNG), most Plasmodium falciparum isolates proved resistant to chloroquine (CQ) in vitro between 2005 and 2007, and there was near-fixation of pfcrt K76T, pfdhfr C59R/S108N and pfmdr1 N86Y. To determine whether the subsequent introduction of artemisinin combination therapy (ACT) and reduced CQ-sulphadoxine-pyrimethamine pressure had attenuated parasite drug susceptibility and resistance-associated mutations, these parameters were re-assessed between 2011 and 2013. Methods: A validated fluorescence-based assay was used to assess growth inhibition of 52 P. falciparum isolates from children in a clinical trial in Madang Province. Responses to CQ, lumefantrine, piperaquine, naphthoquine, pyronaridine, artesunate, dihydroartemisinin, artemether were assessed. Molecular resistance markers were detected using a multiplex PCR ligase detection reaction fluorescent microsphere assay. Results: CQ resistance (in vitro concentration required for 50% parasite growth inhibition (IC50) >100 nM) was present in 19% of isolates. All piperaquine and naphthoquine IC50s were <100 nM and those for lumefantrine, pyronaridine and the artemisinin derivatives were in low nM ranges. Factor analysis of IC50s showed three groupings (lumefantrine; CQ, piperaquine, naphthoquine; pyronaridine, dihydroartemisinin, artemether, artesunate). Most isolates (96%) were monoclonal pfcrt K76T (SVMNT) mutants and most (86%) contained pfmdr1 N86Y (YYSND). No wild-type pfdhfr was found but most isolates contained wild-type (SAKAA) pfdhps. Compared with 2005-2007, the geometric mean (95% CI) CQ IC50 was lower (87 (71-107) vs 167 (141-197) nM) and there had been no change in the prevalence of pfcrt K76T or pfmdr1 mutations. There were fewer isolates of the pfdhps (SAKAA) wild-type (60 vs 100%) and pfdhfr mutations persisted. Conclusions: Reflecting less drug pressure, in vitro CQ sensitivity appears to be improving in Madang Province despite continued near-fixation of pfcrt K76T and pfmdr1 mutations. Temporal changes in IC50s for other anti-malarial drugs were inconsistent but susceptibility was preserved. Retention or increases in pfdhfr and pfdhps mutations reflect continued use of sulphadoxine-pyrimethamine in the study area including through paediatric intermittent preventive treatment. The susceptibility of local isolates to lumefantrine may be unrelated to those of other ACT partner drugs. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12610000913077

    Comparison of three methods for detection of gametocytes in Melanesian children treated for uncomplicated malaria

    Get PDF
    Background: Gametocytes are the transmission stages of Plasmodium parasites, the causative agents of malaria. As their density in the human host is typically low, they are often undetected by conventional light microscopy. Furthermore, application of RNA-based molecular detection methods for gametocyte detection remains challenging in remote field settings. In the present study, a detailed comparison of three methods, namely light microscopy, magnetic fractionation and reverse transcriptase polymerase chain reaction for detection of Plasmodium falciparum and Plasmodium vivax gametocytes was conducted.Methods. Peripheral blood samples from 70 children aged 0.5 to five years with uncomplicated malaria who were treated with either artemether-lumefantrine or artemisinin-naphthoquine were collected from two health facilities on the north coast of Papua New Guinea. The samples were taken prior to treatment (day 0) and at pre-specified intervals during follow-up. Gametocytes were measured in each sample by three methods: i) light microscopy (LM), ii) quantitative magnetic fractionation (MF) and, iii) reverse transcriptase PCR (RTPCR). Data were analysed using censored linear regression and Bland and Altman techniques.Results: MF and RTPCR were similarly sensitive and specific, and both were superior to LM. Overall, there were approximately 20% gametocyte-positive samples by LM, whereas gametocyte positivity by MF and RTPCR were both more than two-fold this level. In the subset of samples collected prior to treatment, 29% of children were positive by LM, and 85% were gametocyte positive by MF and RTPCR, respectively.Conclusions: The present study represents the first direct comparison of standard LM, MF and RTPCR for gametocyte detection in field isolates. It provides strong evidence that MF is superior to LM and can be used to detect gametocytaemic patients under field conditions with similar sensitivity and specificity as RTPCR

    Gametocyte clearance kinetics determined by quantitative magnetic fractionation in Melanesian children with uncomplicated malaria treated with artemisinin combination therapy

    No full text
    Copyright © 2015, American Society for Microbiology. All Rights Reserved.Quantitative magnetic fractionation and a published mathematical model were used to characterize between-treatment differences in gametocyte density and prevalence in 70 Papua New Guinean children with uncomplicated Plasmodium falciparum and/or Plasmodium vivax malaria randomized to one of two artemisinin combination therapies (artemether-lumefantrine or artemisinin-naphthoquine) in an intervention trial. There was an initial rise in peripheral P. falciparum gametocyte density with both treatments, but it was more pronounced in the artemisinin-naphthoquine group. Model-derived estimates of the median pretreatment sequestered gametocyte population were 21/”l for artemether-lumefantrine and 61/”l for artemisinin-naphthoquine (P < 0.001). The median time for P. falciparum gametocyte density to fall to <2.5/”l (below which transmission becomes unlikely) was 16 days in the artemether-lumefantrine group and 20 days in artemisinin-naphthoquine group (P < 0.001). Gametocyte prevalence modeling suggested that artemisinin-naphthoquine-treated children became gametocytemic faster (median, 2.2 days) than artemether-lumefantrine-treated children (median, 5.3 days; P < 0.001) and had a longer median P. falciparum gametocyte carriage time per individual (20 versus 13 days; P < 0.001). Clearance of P. vivax gametocytes was rapid (within 3 days) in both groups; however, consistent with the reappearance of asexual forms in the main trial, nearly 40% of children in the artemether-lumefantrine group developed P. vivax gametocytemia between days 28 and 42 compared with 3% of children in the artemisinin-naphthoquine group. These data suggest that artemisinin is less active than artemether against sequestered gametocytes. Greater initial gametocyte release after artemisinin-naphthoquine increases the period of potential P. falciparum transmission by 4 days relative to artemether-lumefantrine, but the longer elimination half-life of naphthoquine than of lumefantrine suppresses P. vivax recurrence and consequent gametocytemia

    Magneto-optical diagnosis of symptomatic malaria in Papua New Guinea

    Get PDF
    Improved methods for malaria diagnosis are urgently needed. Here, we evaluate a novel method named rotating-crystal magneto-optical detection (RMOD) in 956 suspected malaria patients in Papua New Guinea. RMOD tests can be conducted within minutes and at low cost. We systematically evaluate the capability of RMOD to detect infections by directly comparing it with expert light microscopy, rapid diagnostic tests and polymerase chain reaction on capillary blood samples. We show that compared to light microscopy, RMOD exhibits 82% sensitivity and 84% specificity to detect any malaria infection and 87% sensitivity and 88% specificity to detect Plasmodium vivax. This indicates that RMOD could be useful in P. vivax dominated elimination settings. Parasite density correlates well with the quantitative magneto-optical signal. Importantly, residual hemozoin present in malaria-negative patients is also detectable by RMOD, indicating its ability to detect previous infections. This could be exploited to reveal transmission hotspots in low-transmission settings
    corecore