30,819 research outputs found
Production and rescattering of strange baryons at SPS energies in a transport model with hadron potentials
A mean-field potential version of the Ultra-relativistic Quantum Molecular
Dynamics (UrQMD) model is used to investigate the production of strange
baryons, especially the s and s, from heavy ion
collisions at SPS energies. It is found that, with the consideration of both
formed and pre-formed hadron potentials in UrQMD, the transverse mass and
longitudinal rapidity distributions of experimental data of both s and
s can be quantitatively explained fairly well. Our
investigation also shows that both the production mechanism and the
rescattering process of hadrons play important roles in the final yield of
strange baryons.Comment: 15 pages, 7 figure
Finite disturbance effect on the stability of a laminar incompressible wake behind a flat plate
An integral method is used to investigate the interaction between a two-dimensional, single frequency finite amplitude disturbance in a laminar, incompressible wake behind a flat plate at zero incidence. The mean flow is assumed to be a non-parallel flow characterized by a few shape parameters. Distribution of the fluctuation across the wake is obtained as functions of those mean flow parameters by solving the inviscid Rayleigh equation using the local mean flow. The variations of the fluctuation amplitude and of the shape parameters for the mean flow are then obtained by solving a set of ordinary differential equations derived from the momentum and energy integral equations. The interaction between the mean flow and the fluctuation through Reynolds stresses plays an important role in the present formulation, and the theoretical results show good agreement with the measurements of Sato & Kuriki (1961)
Dirichlet Process Hidden Markov Multiple Change-point Model
This paper proposes a new Bayesian multiple change-point model which is based
on the hidden Markov approach. The Dirichlet process hidden Markov model does
not require the specification of the number of change-points a priori. Hence
our model is robust to model specification in contrast to the fully parametric
Bayesian model. We propose a general Markov chain Monte Carlo algorithm which
only needs to sample the states around change-points. Simulations for a normal
mean-shift model with known and unknown variance demonstrate advantages of our
approach. Two applications, namely the coal-mining disaster data and the real
United States Gross Domestic Product growth, are provided. We detect a single
change-point for both the disaster data and US GDP growth. All the change-point
locations and posterior inferences of the two applications are in line with
existing methods.Comment: Published at http://dx.doi.org/10.1214/14-BA910 in the Bayesian
Analysis (http://projecteuclid.org/euclid.ba) by the International Society of
Bayesian Analysis (http://bayesian.org/
Design of helicopter rotor blades for optimum dynamic characteristics
The mass and stiffness distributions for helicopter rotor blades are tailored in such a way to give a predetermined placement of blade natural frequencies. The optimal design is pursued with respect of minimum weight, sufficient inertia, and reasonable dynamic characteristics. Finite element techniques are used as a tool. Rotor types include hingeless, articulated, and teetering
A Gravitational Effective Action on a Finite Triangulation
We construct a function of the edge-lengths of a triangulated surface whose
variation under a rescaling of all the edges that meet at a vertex is the
defect angle at that vertex. We interpret this function as a gravitational
effective action on the triangulation, and the variation as a trace anomaly.Comment: 5 pages; clarifications, acknowledgements, references adde
Parker-Jeans Instability of Gaseous Disks Including the Effect of Cosmic Rays
We use linear analysis to examine the effect of cosmic rays (CRs) on the
Parker-Jeans instability of magnetized self-gravitating gaseous disks. We adopt
a slab equilibrium model in which the gravity (including self-gravity) is
perpendicular to the mid-plane, the magnetic field lies along the slab. CR is
described as a fluid and only along magnetic field lines diffusion is
considered. The linearised equations are solved numerically. The system is
susceptible to Parker-Jeans instability. In general the system is less unstable
when the CR diffusion coefficient is smaller (i.e., the coupling between the
CRs and plasma is stronger). The system is also less unstable if CR pressure is
larger. This is a reminiscence of the fact that Jeans instability and Parker
instability are less unstable when the gas pressure is larger (or temperature
is higher). Moreover, for large CR diffusion coefficient (or small CR
pressure), perturbations parallel to the magnetic field are more unstable than
those perpendicular to it. The other governing factor on the growth rate of the
perturbations in different directions is the thickness of the disk or the
strength of the external pressure on the disk. In fact, this is the determining
factor in some parameter regimes.Comment: 19pages, 14figures submitted to Ap
Jet Fragmentation via Recombination of Parton Showers
We study hadron production in jets by applying quark recombination to jet
shower partons. With the jet showers obtained from PYTHIA and augmented by
additional non-perturbative effects, we compute hadron spectra in e+ +
e-collisions at sqrt(s)=200 GeV. Including contributions from resonance decays,
we find that the resulting transverse momentum spectra for pions, kaons, and
protons reproduce reasonably those from the string fragmentation as implemented
in PYTHIA.Comment: 4 pages, 3 figures, contribution to Nucleus-Nucleus Collisions 201
Propagation of a magnetic domain wall in magnetic wires with asymmetric notches
The propagation of a magnetic domain wall (DW) in a submicron magnetic wire
consisting of a magnetic/nonmagnetic/magnetic trilayered structure with
asymmetric notches was investigated by utilizing the giant magnetoresistance
effect. The propagation direction of a DW was controlled by a pulsed local
magnetic field, which nucleates the DW at one of the two ends of the wire. It
was found that the depinning field of the DW from the notch depends on the
propagation direction of the DW.Comment: 12 pages, 3 figure
Lepton masses and mixing angles from heterotic orbifold models
We systematically study the possibility for realizing realistic values of
lepton mass ratios and mixing angles by using only renormalizable Yukawa
couplings derived from heterotic -I orbifold. We assume one pair of up and
down sector Higgs fields. We consider both the Dirac neutrino mass scenario and
the seesaw scenario with degenerate right-handed majorana neutrino masses. It
is found that realistic values of the charged lepton mass ratios,
and , the neutrino mass squared difference ratio, , and the lepton mixing angles can be obtained in
certain cases.Comment: 22 pages, late
- …