30,819 research outputs found

    Production and rescattering of strange baryons at SPS energies in a transport model with hadron potentials

    Full text link
    A mean-field potential version of the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model is used to investigate the production of strange baryons, especially the Λ\Lambdas and Λ\overline{\Lambda}s, from heavy ion collisions at SPS energies. It is found that, with the consideration of both formed and pre-formed hadron potentials in UrQMD, the transverse mass and longitudinal rapidity distributions of experimental data of both Λ\Lambdas and Λ\overline{\Lambda}s can be quantitatively explained fairly well. Our investigation also shows that both the production mechanism and the rescattering process of hadrons play important roles in the final yield of strange baryons.Comment: 15 pages, 7 figure

    Finite disturbance effect on the stability of a laminar incompressible wake behind a flat plate

    Get PDF
    An integral method is used to investigate the interaction between a two-dimensional, single frequency finite amplitude disturbance in a laminar, incompressible wake behind a flat plate at zero incidence. The mean flow is assumed to be a non-parallel flow characterized by a few shape parameters. Distribution of the fluctuation across the wake is obtained as functions of those mean flow parameters by solving the inviscid Rayleigh equation using the local mean flow. The variations of the fluctuation amplitude and of the shape parameters for the mean flow are then obtained by solving a set of ordinary differential equations derived from the momentum and energy integral equations. The interaction between the mean flow and the fluctuation through Reynolds stresses plays an important role in the present formulation, and the theoretical results show good agreement with the measurements of Sato & Kuriki (1961)

    Dirichlet Process Hidden Markov Multiple Change-point Model

    Get PDF
    This paper proposes a new Bayesian multiple change-point model which is based on the hidden Markov approach. The Dirichlet process hidden Markov model does not require the specification of the number of change-points a priori. Hence our model is robust to model specification in contrast to the fully parametric Bayesian model. We propose a general Markov chain Monte Carlo algorithm which only needs to sample the states around change-points. Simulations for a normal mean-shift model with known and unknown variance demonstrate advantages of our approach. Two applications, namely the coal-mining disaster data and the real United States Gross Domestic Product growth, are provided. We detect a single change-point for both the disaster data and US GDP growth. All the change-point locations and posterior inferences of the two applications are in line with existing methods.Comment: Published at http://dx.doi.org/10.1214/14-BA910 in the Bayesian Analysis (http://projecteuclid.org/euclid.ba) by the International Society of Bayesian Analysis (http://bayesian.org/

    Design of helicopter rotor blades for optimum dynamic characteristics

    Get PDF
    The mass and stiffness distributions for helicopter rotor blades are tailored in such a way to give a predetermined placement of blade natural frequencies. The optimal design is pursued with respect of minimum weight, sufficient inertia, and reasonable dynamic characteristics. Finite element techniques are used as a tool. Rotor types include hingeless, articulated, and teetering

    A Gravitational Effective Action on a Finite Triangulation

    Full text link
    We construct a function of the edge-lengths of a triangulated surface whose variation under a rescaling of all the edges that meet at a vertex is the defect angle at that vertex. We interpret this function as a gravitational effective action on the triangulation, and the variation as a trace anomaly.Comment: 5 pages; clarifications, acknowledgements, references adde

    Parker-Jeans Instability of Gaseous Disks Including the Effect of Cosmic Rays

    Full text link
    We use linear analysis to examine the effect of cosmic rays (CRs) on the Parker-Jeans instability of magnetized self-gravitating gaseous disks. We adopt a slab equilibrium model in which the gravity (including self-gravity) is perpendicular to the mid-plane, the magnetic field lies along the slab. CR is described as a fluid and only along magnetic field lines diffusion is considered. The linearised equations are solved numerically. The system is susceptible to Parker-Jeans instability. In general the system is less unstable when the CR diffusion coefficient is smaller (i.e., the coupling between the CRs and plasma is stronger). The system is also less unstable if CR pressure is larger. This is a reminiscence of the fact that Jeans instability and Parker instability are less unstable when the gas pressure is larger (or temperature is higher). Moreover, for large CR diffusion coefficient (or small CR pressure), perturbations parallel to the magnetic field are more unstable than those perpendicular to it. The other governing factor on the growth rate of the perturbations in different directions is the thickness of the disk or the strength of the external pressure on the disk. In fact, this is the determining factor in some parameter regimes.Comment: 19pages, 14figures submitted to Ap

    Jet Fragmentation via Recombination of Parton Showers

    Full text link
    We study hadron production in jets by applying quark recombination to jet shower partons. With the jet showers obtained from PYTHIA and augmented by additional non-perturbative effects, we compute hadron spectra in e+ + e-collisions at sqrt(s)=200 GeV. Including contributions from resonance decays, we find that the resulting transverse momentum spectra for pions, kaons, and protons reproduce reasonably those from the string fragmentation as implemented in PYTHIA.Comment: 4 pages, 3 figures, contribution to Nucleus-Nucleus Collisions 201

    Propagation of a magnetic domain wall in magnetic wires with asymmetric notches

    Get PDF
    The propagation of a magnetic domain wall (DW) in a submicron magnetic wire consisting of a magnetic/nonmagnetic/magnetic trilayered structure with asymmetric notches was investigated by utilizing the giant magnetoresistance effect. The propagation direction of a DW was controlled by a pulsed local magnetic field, which nucleates the DW at one of the two ends of the wire. It was found that the depinning field of the DW from the notch depends on the propagation direction of the DW.Comment: 12 pages, 3 figure

    Lepton masses and mixing angles from heterotic orbifold models

    Full text link
    We systematically study the possibility for realizing realistic values of lepton mass ratios and mixing angles by using only renormalizable Yukawa couplings derived from heterotic Z6Z_6-I orbifold. We assume one pair of up and down sector Higgs fields. We consider both the Dirac neutrino mass scenario and the seesaw scenario with degenerate right-handed majorana neutrino masses. It is found that realistic values of the charged lepton mass ratios, me/mτm_e/m_\tau and mμ/mτm_\mu/m_\tau, the neutrino mass squared difference ratio, Δm312/Δm212\Delta m^2_{31}/\Delta m^2_{21}, and the lepton mixing angles can be obtained in certain cases.Comment: 22 pages, late
    corecore