14 research outputs found

    Insights into the Molecular Evolution of the PDZ/LIM Family and Identification of a Novel Conserved Protein Motif

    Get PDF
    The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36), Mystique, Enigma (LMP-1), Enigma homologue (ENH), ZASP (Cypher, Oracle), LMO7 and the two LIM domain kinases (LIMK1 and LIMK2). As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call ‘ALP-like motif’ (AM). This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family

    The Diversification of the LIM Superclass at the Base of the Metazoa Increased Subcellular Complexity and Promoted Multicellular Specialization

    Get PDF
    Background: Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass. Results: We have identified and characterized all known LIM domain-containing proteins in six metazoans and three nonmetazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineagespecific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study. Conclusion: Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity

    PDZ-LIM domain proteins and α-actinin at the muscle Z-disk

    No full text
    Abstract The Z-disk is a sophisticated structure that connects adjacent sarcomeres in striated muscle myofibrils. α-Actinin provides strength to the Z-disks by crosslinking the actin filaments of adjacent sarcomeres. α-Actinin is an antiparallel homodimer, composed of an N-terminal actin binding domain (ABD), the central rod domain, and two pairs of C-terminal EF-hands. The PDZ-LIM domain proteins interact with α-actinin at the Z-disk. Of these proteins, only the actinin-associated LIM protein (ALP), Z-band alternatively spliced PDZ-containing protein (ZASP/Cypher) and C-terminal LIM protein (CLP36) have a ZASP/Cypher-like (ZM) motif consisting of 26-27 conserved residues in the internal region between the PDZ and LIM domains. The aim of this work was to understand the molecular interplay between the ZM-motif containing members of the PDZ-LIM proteins and α-actinin. To unveil the biological relevance of the interaction between the PDZ-LIM proteins and α-actinin, naturally occurring human ZASP/Cypher mutations were analyzed. Two interaction sites were found between ALP, CLP36 and α-actinin using recombinant purified proteins in surface plasmon resonance (SPR) analysis. The PDZ domain of ALP and CLP36 recognized the C-terminus of α-actinin, whereas the internal regions bound to the rod domain. Further characterization showed that the ALP internal region adopts and extended conformation when interacting with α-actinin and that the ZM-motif partly mediated the interaction, but did not define the entire interaction area. ZASP/Cypher also interacted and competed with ALP in binding to the rod domain. The internal fragments containing the ZM-motif were important for co-localization of ALP and ZASP/Cypher with α-actinin at the Z-disks and on stress fibers. The absence of ALP and ZASP/Cypher in focal contacts indicates that other interacting molecules, for instance vinculin and integrin, may compete in binding to the rod in these areas or additional proteins are required in targeting to these locations. The co-localization of the ZASP/Cypher with α-actinin could be released by disrupting the stress fibers leading to an accumulation of α-actinin in the cell periphery, whereas ZASP/Cypher was not in these areas. This suggests that an intact cytoskeleton is important for ZASP/Cypher interaction with α-actinin. Earlier studies have shown that mutations in the ZASP/Cypher internal region are associated with muscular diseases. These mutations, however, did not affect ZASP/Cypher co-localization with α-actinin or the stability of ZASP/Cypher proteins. The Z-disk possesses a stretch sensor, which is involved in triggering hypertrophic growth as a compensatory mechanism to increased workloads. α-Actinin is a docking site of molecules that are involved in hypertrophic signaling cascades mediated by calsarcin-calcineurin and protein kinase C (PKC) isoforms. The internal interaction site may be involved in targeting PKCs, which bind to the LIM domains of ZASP/Cypher, to the Z-disks. The similar location of the internal interaction site with calsarcin on the rod suggests that ZASP/Cypher, ALP and CLP36 may regulate calsarcin-mediated hypertrophic signaling

    Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma

    Get PDF
    Abstract Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses
    corecore