12,339 research outputs found

    Quantum fluctuations in quantum lattice-systems with continuous symmetry

    Full text link
    We discuss conditions for the absence of spontaneous breakdown of continuous symmetries in quantum lattice systems at T=0T=0. Our analysis is based on Pitaevskii and Stringari's idea that the uncertainty relation can be employed to show quantum fluctuations. For the one-dimensional systems, it is shown that the ground state is invariant under the continuous transformation if a certain uniform susceptibility is finite. For the two- and three-dimensional systems, it is shown that truncated correlation functions cannot decay any more rapidly than rd+1|r|^{-d+1} whenever the continuous symmetry is spontaneously broken. Both of these phenomena occur owing to quantum fluctuations. Our theorems cover a wide class of quantum lattice-systems having not-too-long-range interactions.Comment: 14 pages. To appear in J.Stat.Phy

    A ratchet mechanism for amplification in low-frequency mammalian hearing

    Full text link
    The sensitivity and frequency selectivity of hearing result from tuned amplification by an active process in the mechanoreceptive hair cells. In most vertebrates the active process stems from the active motility of hair bundles. The mammalian cochlea exhibits an additional form of mechanical activity termed electromotility: its outer hair cells (OHCs) change length upon electrical stimulation. The relative contributions of these two mechanisms to the active process in the mammalian inner ear is the subject of intense current debate. Here we show that active hair-bundle motility and electromotility can together implement an efficient mechanism for amplification that functions like a ratchet: sound-evoked forces acting on the basilar membrane are transmitted to the hair bundles whereas electromotility decouples active hair-bundle forces from the basilar membrane. This unidirectional coupling can extend the hearing range well below the resonant frequency of the basilar membrane. It thereby provides a concept for low-frequency hearing that accounts for a variety of unexplained experimental observations from the cochlear apex, including the shape and phase behavior of apical tuning curves, their lack of significant nonlinearities, and the shape changes of threshold tuning curves of auditory nerve fibers along the cochlea. The ratchet mechanism constitutes a general design principle for implementing mechanical amplification in engineering applications.Comment: 6 pages, 4 figures, plus Supplementary Information. Animation available on the PNAS website (http://dx.doi.org/10.1073/pnas.0914345107)

    Oblique Corrections To The W Width

    Full text link
    The lowest-order expression for the partial WW width to eν, Γ(Weν)=GμMW3/(6π2)e \nu ,~\Gamma (W \to e \nu) = G_\mu M_W^3 /(6 \pi \sqrt{2}), has no oblique radiative corrections from new physics if the measured WW mass is used. Here Gμ=(1.16639±0.00002)×105G_\mu = (1.16639 \pm 0.00002) \times 10^{-5} GeV/c2c^2 is the muon decay constant. For the present value of MW=(80.14±0.27)M_W = (80.14 \pm 0.27) GeV/c2c^2, and with mt=140m_t = 140 GeV/c2/c^2, one expects Γ(Weν)=(224.4±2.3)\Gamma (W \to e \nu) = (224.4 \pm 2.3) MeV. The total width Γtot(W)\Gamma_{\rm tot}(W) is also expected to lack oblique corrections from new physics, so that Γtot(W)/Γ(Weν)=3+6[1+{αs(MW)/π}]\Gamma_{\rm tot} (W)/ \Gamma (W \to e \nu) = 3 + 6 [1 + \{\alpha_s (M_W)/\pi \}]. Present data are consistent with this prediction.Comment: 15 pages (LaTeX), one PostScript figure not included (available upon request

    Consistency of the Regularization of Gauge Theories by High Covariant Derivatives

    Full text link
    We show that regularization of gauge theories by higher covariant derivatives and gauge invariant Pauli-Villars regulators is a consistent method if the Pauli-Villars vector fields are considered in a covariant in the regulating Pauli-Villars fields is pathological and the original Slavnov proposal in covariant Landau gauge is not correct because of the appearance of massless modes in the regulators which do not decouple when the ultraviolet regulator is removed. In such a case the method does not correspond to the regularization of a pure gauge theory but that of a gauge theory in interaction with massless ghost fields. This explains the problems pointed out by Martin and Ruiz in covariant Landau gauge. However, a minor modification of Slavnov method provides a consistent regularization even for such a case. The regularization that we introduce also solves the problem of overlapping divergences in a way similar to geometric regularization and yields the standard values of the β\beta and γ\gamma functions of the renormalization group equations.Comment: 20 pages, latex, 3 Postscript figures (expanded version

    Structure and Magnetization of Two-Dimensional Vortex Arrays in the Presence of Periodic Pinning

    Get PDF
    Ground-state properties of a two-dimensional system of superconducting vortices in the presence of a periodic array of strong pinning centers are studied analytically and numerically. The ground states of the vortex system at different filling ratios are found using a simple geometric argument under the assumption that the penetration depth is much smaller than the spacing of the pin lattice. The results of this calculation are confirmed by numerical studies in which simulated annealing is used to locate the ground states of the vortex system. The zero-temperature equilibrium magnetization as a function of the applied field is obtained by numerically calculating the energy of the ground state for a large number of closely spaced filling ratios. The results show interesting commensurability effects such as plateaus in the B-H diagram at simple fractional filling ratios.Comment: 12 pages, 19 figures, submitted for publicatio

    Electrical detection of 31P spin quantum states

    Get PDF
    In recent years, a variety of solid-state qubits has been realized, including quantum dots, superconducting tunnel junctions and point defects. Due to its potential compatibility with existing microelectronics, the proposal by Kane based on phosphorus donors in Si has also been pursued intensively. A key issue of this concept is the readout of the P quantum state. While electrical measurements of magnetic resonance have been performed on single spins, the statistical nature of these experiments based on random telegraph noise measurements has impeded the readout of single spin states. In this letter, we demonstrate the measurement of the spin state of P donor electrons in silicon and the observation of Rabi flops by purely electric means, accomplished by coherent manipulation of spin-dependent charge carrier recombination between the P donor and paramagnetic localized states at the Si/SiO2 interface via pulsed electrically detected magnetic resonance. The electron spin information is shown to be coupled through the hyperfine interaction with the P nucleus, which demonstrates the feasibility of a recombination-based readout of nuclear spins

    Modulation of cognitive performance and mood by aromas of peppermint and ylang-ylang

    Get PDF
    This study provides further evidence for the impact of the aromas of plant essential oils on aspects of cognition and mood in healthy participants. One hundred and forty-four volunteers were randomly assigned to conditions of ylang-ylang aroma, peppermint aroma, or no aroma control. Cognitive performance was assessed using the Cognitive Drug Research computerized assessment battery, with mood scales completed before and after cognitive testing. The analysis of the data revealed significant differences between conditions on a number of the factors underpinning the tests that constitute the battery. Peppermint was found to enhance memory whereas ylang-ylang impaired it, and lengthened processing speed. In terms of subjective mood peppermint increased alertness and ylang-ylang decreased it, but significantly increased calmness. These results provide support for the contention that the aromas of essential oils can produce significant and idiosyncratic effects on both subjective and objective assessments of aspects of human behavior. They are discussed with reference to possible pharmacological and psychological modes of influence

    First-principles study of orthorhombic CdTiO3 perovskite

    Full text link
    In this work we perform an ab-initio study of CdTiO3 perovskite in its orthorhombic phase using FLAPW method. Our calculations help to decide between the different cristallographic structures proposed for this perovskite from X-Ray measurements. We compute the electric field gradient tensor (EFG) at Cd site and obtain excellent agreement with available experimental information from a perturbed angular correlation (PAC) experiment. We study EFG under an isotropic change of volume and show that in this case the widely used "point charge model approximation" to determine EFG works quite well.Comment: 4 pages, 1 figure. Accepted in Physical Review
    corecore