117 research outputs found

    Effect of Wood Fillers on the Viscoelastic and Thermophysical Properties of HDPE-Wood Composite

    Get PDF
    Wood polymer composites (WPC) have well proven their applicability in several fields of the plasturgy sector, due to their aesthetics and low maintenance costs. However, for plasturgy applications, the characterization of viscoelastic behavior and thermomechanical and thermophysical properties of WPC with the temperature and wood filler contents is essential. Therefore, the processability of polymer composites made up with different percentage of wood particles needs a better understanding of materials behaviors in accordance with temperature and wood particles contents. To this end, a numerical analysis of the viscoelastic, mechanical, and thermophysical properties of composite composed of high density polyethylene (HDPE) reinforced with soft wood particles is evaluated

    From Architectured Materials to Large-Scale Additive Manufacturing

    Get PDF
    The classical material-by-design approach has been extensively perfected by materials scientists, while engineers have been optimising structures geometrically for centuries. The purpose of architectured materials is to build bridges across themicroscale ofmaterials and themacroscale of engineering structures, to put some geometry in the microstructure. This is a paradigm shift. Materials cannot be considered monolithic anymore. Any set of materials functions, even antagonistic ones, can be envisaged in the future. In this paper, we intend to demonstrate the pertinence of computation for developing architectured materials, and the not-so-incidental outcome which led us to developing large-scale additive manufacturing for architectural applications

    Computational Homogenization of Architectured Materials

    Get PDF
    Architectured materials involve geometrically engineered distributions of microstructural phases at a scale comparable to the scale of the component, thus calling for new models in order to determine the effective properties of materials. The present chapter aims at providing such models, in the case of mechanical properties. As a matter of fact, one engineering challenge is to predict the effective properties of such materials; computational homogenization using finite element analysis is a powerful tool to do so. Homogenized behavior of architectured materials can thus be used in large structural computations, hence enabling the dissemination of architectured materials in the industry. Furthermore, computational homogenization is the basis for computational topology optimization which will give rise to the next generation of architectured materials. This chapter covers the computational homogenization of periodic architectured materials in elasticity and plasticity, as well as the homogenization and representativity of random architectured materials

    Optimization of elasticity of unidirectionnal non-overlapping fiber reinforced materials

    No full text
    The aim of this work is to efficiently select samples of non-overlapping parallel fiber reinforced composites with regard to their elasticity and their fiber distribution in the composite cross-section. The samples were built with the help of the simulated annealing technique according to chosen Radial Distribution Functions. For each sample the fields of local stresses were simulated by finite element method, then homogenized by volume averaging in order to investigate their elastic properties. The effect of RDF shape on elastic properties was quantified. The more the fiber distributions deviate from Poisson’s Law the higher the effective elastic moduli are. A method to select samples of real fiber reinforced composites according to their elasticity is proposed

    Nine generations of selection for high and low nicotine intake in outbred Sprague-Dawley rats

    No full text
    PubMed ID: 23912820Previous animal studies have revealed significant involvement of genetics in nicotine intake; however, the extent of the genetic contribution to this behavior has not been well addressed. We report the first study of nine generations of selection for high and low voluntary nicotine intake in outbred Sprague-Dawley rats. Bidirectional mass selection resulted in progressively greater nicotine consumption in the high nicotine-preferring line but no decrease in nicotine intake in the low nicotine-preferring line across generations. Our estimated realized heritability for high voluntary nicotine intake is 0.26 vs close to zero for low voluntary nicotine intake. In contrast, we found no differences between the lines across generations for saccharine intake. These selected lines may provide useful animal models for identifying susceptibility and resistance genes and variants for controlling voluntary nicotine intake in rodents, although we recognize that more generations of selection of these two lines and independent replication of our selection for high and low nicotine-preferring lines are needed. © 2013 Springer Science+Business Media New York.001 BAM 2006 National Institutes of Health: DA-012844Acknowledgments We are grateful to Dr. Gonca Mola, Merve Evren, and Tuna Nesil and Muzeyyen Ugur for their assistance in data collection and to Professor Qin Zhang of China Agricultural University for calculating inbreeding coefficients for the study. The animal-related study was funded by the Ege University Research Fund (Grant 001 BAM 2006). The analysis of data and preparation of -- this report were supported in part by National Institutes of Health grant DA-012844 to MDL. -
    corecore