1,281 research outputs found

    Service-based survey of dystonia in Munich

    Get PDF
    We performed a service-based epidemiological study of dystonia in Munich, Germany. Due to favourable referral and treatment patterns in the Munich area, we could provide confident data from dystonia patients seeking botulinum toxin treatment. A total of 230 patients were ascertained, of whom 188 had primary dystonia. Point prevalence ratios were estimated to be 10.1 (95% confidence interval 8.4-11.9) per 100,000 for focal and 0.3 (0.0-0.6) for generalised primary dystonia. The most common focal primary dystonias were cervical dystonia with 5.4 (4.2-6.7) and essential blepharospasm with 3.1 (2.1-4.1) per 100,000 followed by laryngeal dystonia (spasmodic dysphonia) with 1.0 (0.4-1.5) per 100,000. Copyright (C) 2002 S. Karger AG, Base

    Cell Cytoskeleton Dynamics: Mechano-Sensing Properties

    Get PDF
    `The actin cytoskeleton network is the dominant structure of eukaryotic cells. It is highlydynamic and plays a central role in a wide range of mechanical and biological functions.Cytoskeleton is composed mainly of actin filaments (F-actin) resulting from the self-assemblyof monomeric actin (G-actin) and cross-linked by actin cross-linking proteins (ACPs) whosenature and concentration determine the morphological and rheological properties of thenetwork. These actin filaments are reversibly coupled to membrane proteins (critical to theresponse of cells to external stress) and in conjunction with motor proteins from the myosinfamily, are able to generate contractile force during cell migration. Knowledge of actincytoskeleton and its rheological properties is therefore indispensable for understanding theunderlying mechanics and various biological processes of cells. Here, we present a 3-DBrownian dynamics (BD) computational model in which actin monomers polymerize andbecome cross-linked by two types of ACPs, forming either parallel filament bundles ororthogonal networks. Also, the active and dynamic behaviour of motors is included. In thissimulation, actin monomers, filaments, ACPs, and motors experience thermal motion andinteract with each other with binding probabilities and defined potentials. Displacements aregoverned by the Langevin equation, and positions of all elements are updated using the Eulerintegration scheme.In this first part of the work, the mechano-sensing properties of active networks are investigatedby evaluating stress and strain rate in response to different substrate stiffness

    The cascade structure of linear instability in collapsible channel flows

    Get PDF
    This paper studies the unsteady behaviour and linear stability of the flow in a collapsible channel using a fluid–beam model. The solid mechanics is analysed in a plane strain configuration, in which the principal stretch is defined with a zero initial strain. Two approaches are employed: unsteady numerical simulations solving the nonlinear fully coupled fluid–structure interaction problem; and the corresponding linearized eigenvalue approach solving the Orr–Sommerfeld equations modified by the beam. The two approaches give good agreement with each other in predicting the frequencies and growth rates of the perturbation modes, close to the neutral curves. For a given Reynolds number in the range of 200–600, a cascade of instabilities is discovered as the wall stiffness (or effective tension) is reduced. Under small perturbation to steady solutions for the same Reynolds number, the system loses stability by passing through a succession of unstable zones, with mode number increasing as the wall stiffness is decreased. It is found that this cascade structure can, in principle, be extended to many modes, depending on the parameters. A puzzling ‘tongue’ shaped stable zone in the wall stiffness–Re space turns out to be the zone sandwiched by the mode-2 and mode-3 instabilities. Self-excited oscillations dominated by modes 2–4 are found near their corresponding neutral curves. These modes can also interact and form period-doubling oscillations. Extensive comparisons of the results with existing analytical models are made, and a physical explanation for the cascade structure is proposed

    Morphological Transformation and Force Generation of Active Cytoskeletal Networks

    Get PDF
    Cells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation

    MicroRNA delivery through nanoparticles

    Get PDF
    MicroRNAs (miRNAs) are attracting a growing interest in the scientific community due to their central role in the etiology of major diseases. On the other hand, nanoparticle carriers offer unprecedented opportunities for cell specific controlled delivery of miRNAs for therapeutic purposes. This review critically discusses the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of cancer and neurodegenerative disorders and for tissue regeneration. A fresh perspective is presented on the design and characterization of nanocarriers to accelerate translation from basic research to clinical application of miRNA-nanoparticles. Main challenges in the engineering of miRNA-loaded nanoparticles are discussed, and key application examples are highlighted to underline their therapeutic potential for effective and personalized medicine

    An archaeology of borders: qualitative political theory as a tool in addressing moral distance

    Get PDF
    Interviews, field observations and other qualitative methods increasingly are being used to inform the construction of arguments in normative political theory. This article works to demonstrate the strong salience of some kinds of qualitative material for cosmopolitan arguments to extend distributive boundaries. The incorporation of interviews and related qualitative material can make the moral claims of excluded others more vivid and possibly more difficult to dismiss by advocates of strong priority to compatriots in distributions. Further, it may help to promote the kind of perspective taking that has been associated with actually motivating a willingness to aid by individuals. Illustrative findings are presented from field work conducted for a normative project on global citizenship, including interviews with unauthorized immigrants and the analysis of artifacts left behind on heavily used migrant trails

    Field and Laboratory Responses of Male Leaf Roller Moths, Choristoneura rosaceana and Pandemis pyrusana, to Pheromone Concentrations in an Attracticide Paste Formulation

    Get PDF
    Male leafroller moths, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) and Pandemis pyrusana (Kearfott), were evaluated for responses to a paste formulation loaded with a range of concentrations of the two species' pheromone blends and evaluated in a laboratory wind tunnel and in the field. Response criteria were flight, flight towards the pheromone source, and contact with the pheromone source for the wind tunnel assays, and capture of moths in traps for the field tests. In the wind tunnel and field, responses of males of both species to the paste generally increased as the pheromone concentration in the paste was increased. There was little response by either species to paste with less than 0.16% pheromone. The relationship between pheromone concentration and response for P. pyrusana was linear and for C. rosaceana was sinusoidal over the range of pheromone concentrations tested. These patterns were seen both in the wind tunnel and in the field. Initial release rates from the paste of (Z)-11-tetradecenyl acetate, the main component of the pheromone blends of both species was 3.6–3.8 ng/h. Inhibitory thresholds for responses were not reached for either species, using pheromone concentrations as high as 16%, in either the wind tunnel or the field. For both species, response of males to rubber septa with one mg pheromone loads was similar to the response to the paste with pheromone at concentrations greater than 3–4%. For C. rosaceana, rates of contact with the paste in the wind tunnel were statistically similar to rates of contact in response to conspecific females, with paste pheromone concentrations above 1.6%. Response rates for males of P. pyrusana were significantly lower to the paste than to conspecific females at all paste pheromone concentrations tested. Overall, the optimum pheromone concentration in the paste for moth attraction to contact was 3.2 % for C. rosaceana and 8% for P. pyrusana

    A comparative review of dynamic neural networks and hidden Markov model methods for mobile on-device speech recognition

    Get PDF
    The adoption of high-accuracy speech recognition algorithms without an effective evaluation of their impact on the target computational resource is impractical for mobile and embedded systems. In this paper, techniques are adopted to minimise the required computational resource for an effective mobile-based speech recognition system. A Dynamic Multi-Layer Perceptron speech recognition technique, capable of running in real time on a state-of-the-art mobile device, has been introduced. Even though a conventional hidden Markov model when applied to the same dataset slightly outperformed our approach, its processing time is much higher. The Dynamic Multi-layer Perceptron presented here has an accuracy level of 96.94% and runs significantly faster than similar techniques
    corecore