40 research outputs found

    Ageing, sex and cardioprotection

    Get PDF
    Translation of cardioprotective interventions aimed at reducing myocardial injury during ischaemia-reperfusion from experimental studies to clinical practice is an important yet unmet need in cardiovascular medicine. One particular challenge facing translation is the existence of demographic and clinical factors that influence the pathophysiology of ischaemia-reperfusion injury of the heart and the effects of treatments aimed at preventing it. Among these factors, age and sex are prominent and have a recognised role in the susceptibility and outcome of ischaemic heart disease. Remarkably, some of the most powerful cardioprotective strategies proven to be effective in young animals become ineffective during ageing. This article reviews the mechanisms and implications of the modulatory effects of ageing and sex on myocardial ischaemia-reperfusion injury and their potential effects on cardioprotective interventions

    Mitochondrial respiratory states and rate

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Intrinsic UV-VUV luminescence and X-ray emission spectroscopy of BeO and multicomponent oxide dielectrics

    No full text
    The experimental study of intrinsic UV-VUV luminescence and X-ray emission at the selective excitations near fundamental absorption edge as well as at the inner-shell excita-tions for binary BeO crystal and multicomponent oxide crystals Be₂SiO₄, Y₂SiO₅ and La₂Be₂O₅ has been performed. The results show that relaxation during the time-scale of decay of short-living anion and cation excitations leads to creation of self-trapped excitons at the same low-symmetry local structural units of crystalline lattice. The applied experimental method gives an opportunity to clarify a participation of different crystalline units of complex oxides in the self-trapping of excitons.Виконано експериментальне дослідження власної УФ-ВУФ люмінесценції і рентгенівської емісії для бінарного BeO і комплексних Be₂SiO₄, Y₂SiO₅ й La₂Be₂O₅ кристалів при селективному збудженні поблизу краю фундаментального поглинання і в області поглинання остовних рівнів. Результати дослідження показують, що релаксаційні процеси, що відбуваються протягом часу життя короткоживучих як аніонних, так і катіон-них збуджень приводять до утворення автолокалізованих екситонів у тих самих низьких-симетричних локальних структурних фрагментах кристалічної гратки. Використаний експериментальний метод дозволяє встановити ступінь участі різних фрагментів кристалічної гратки у процесах автолокалізації екситонів у комплексних оксидах.Выполнено экспериментальное исследование собственной УФ-ВУФ люминесценции и рентгеновской эмиссии для бинарного ВеО и комплексных Be₂SiO₄, Y₂SiO₅ и La₂Be₂O₅ кристаллов при селективном возбуждении вблизи края фундаментального поглощения и в области поглощения остовных уровней. Результаты исследования показывают, что релаксационные процессы, происходящие в течение времени жизни короткоживущих как анионных, так и катионных возбуждений приводят к образованию автолокализованных экситонов в одних и тех же низко-симметричных локальных структурных фрагментах кристаллической решетки. Использованный экспериментальный метод позволяет установить степень участия различных фрагментов кристаллической решетки в процессах автолокализации экситонов в комплексных оксидах
    corecore