8,295 research outputs found
Manipulating the torsion of molecules by strong laser pulses
A proof-of-principle experiment is reported, where torsional motion of a
molecule, consisting of a pair of phenyl rings, is induced by strong laser
pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis,
connecting the two phenyl rings, allowing a perpendicularly polarized, intense
femtosecond pulse to initiate torsional motion accompanied by an overall
rotation about the fixed axis. The induced motion is monitored by femtosecond
time-resolved Coulomb explosion imaging. Our theoretical analysis accounts for
and generalizes the experimental findings.Comment: 4 pages, 4 figures, submitted to PRL; Major revision of the
presentation of the material; Correction of ion labels in Fig. 2(a
Solving the m-mixing problem for the three-dimensional time-dependent Schr\"{o}dinger equation by rotations: application to strong-field ionization of H2+
We present a very efficient technique for solving the three-dimensional
time-dependent Schrodinger equation. Our method is applicable to a wide range
of problems where a fullly three-dimensional solution is required, i.e., to
cases where no symmetries exist that reduce the dimensionally of the problem.
Examples include arbitrarily oriented molecules in external fields and atoms
interacting with elliptically polarized light. We demonstrate that even in such
cases, the three-dimensional problem can be decomposed exactly into two
two-dimensional problems at the cost of introducing a trivial rotation
transformation. We supplement the theoretical framework with numerical results
on strong-field ionization of arbitrarily oriented H2+ molecules.Comment: 5 pages, 4 figure
NuSTAR + XMM-Newton monitoring of the neutron star transient AX J1745.6-2901
AX J1745.6-2901 is a high-inclination (eclipsing) transient neutron star (NS)
Low Mass X-ray Binary (LMXB) showcasing intense ionised Fe K absorption. We
present here the analysis of 11 XMM-Newton and 15 NuSTAR new data-sets
(obtained between 2013-2016), therefore tripling the number of observations of
AX J1745.6-2901 in outburst. Thanks to simultaneous XMM-Newton and NuSTAR
spectra, we greatly improve on the fitting of the X-ray continuum. During the
soft state the emission can be described by a disk black body (
keV and inner disc radius km), plus hot ( keV)
black body radiation with a small emitting radius ( km)
likely associated with the boundary layer or NS surface, plus a faint
Comptonisation component. Imprinted on the spectra are clear absorption
features created by both neutral and ionised matter. Additionally, positive
residuals suggestive of an emission Fe K disc line and consistent with
relativistic ionised reflection are present during the soft state, while such
residuals are not significant during the hard state. The hard state spectra are
characterised by a hard () power law, showing no evidence
for a high energy cut off ( keV) and implying a small optical
depth (). The new observations confirm the previously witnessed trend
of exhibiting strong Fe K absorption in the soft state, that significantly
weakens during the hard state. Optical (GROND) and radio (GMRT) observations
suggest for AX J1745.6-2901 a standard broad band SED as typically observed in
accreting neutron stars.Comment: Accepted for publication in MNRA
Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules
The yield of strong-field ionization, by a linearly polarized probe pulse, is
studied experimentally and theoretically, as a function of the relative
orientation between the laser field and the molecule. Experimentally, carbonyl
sulfide, benzonitrile and naphthalene molecules are aligned in one or three
dimensions before being singly ionized by a 30 fs laser pulse centered at 800
nm. Theoretically, we address the behaviour of these three molecules. We
consider the degree of alignment and orientation and model the angular
dependence of the total ionization yield by molecular tunneling theory
accounting for the Stark shift of the energy level of the ionizing orbital. For
naphthalene and benzonitrile the orientational dependence of the ionization
yield agrees well with the calculated results, in particular the observation
that ionization is maximized when the probe laser is polarized along the most
polarizable axis. For OCS the observation of maximum ionization yield when the
probe is perpendicular to the internuclear axis contrasts the theoretical
results.Comment: 14 pages, 4 figure
Biodesalination: an emerging technology for targeted removal of Na+and Cl−from seawater by cyanobacteria
Although desalination by membrane processes is a possible solution to the problem of freshwater supply, related cost and energy demands prohibit its use on a global scale. Hence, there is an emerging necessity for alternative, energy and cost-efficient methods for water desalination. Cyanobacteria are oxygen-producing, photosynthetic bacteria that actively grow in vast blooms both in fresh and seawater bodies. Moreover, cyanobacteria can grow with minimal nutrient requirements and under natural sunlight. Taking these observations together, a consortium of five British Universities was formed to test the principle of using cyanobacteria as ion exchangers, for the specific removal of Na+ and Cl− from seawater. This project consisted of the isolation and characterisation of candidate strains, with central focus on their potential to be osmotically and ionically adaptable. The selection panel resulted in the identification of two Euryhaline strains, one of freshwater (Synechocystis sp. Strain PCC 6803) and one of marine origin (Synechococcus sp. Strain PCC 7002) (Robert Gordon University, Aberdeen). Other work packages were as follows. Genetic manipulations potentially allowed for the expression of a light-driven, Cl−-selective pump in both strains, therefore, enhancing the bioaccumulation of specific ions within the cell (University of Glasgow). Characterisation of surface properties under different salinities (University of Sheffield), ensured that cell–liquid separation efficiency would be maximised post-treatment, as well as monitoring the secretion of mucopolysaccharides in the medium during cell growth. Work at Newcastle University is focused on the social acceptance of this scenario, together with an assessment of the potential risks through the generation and application of a Hazard Analysis and Critical Control Points plan. Finally, researchers in Imperial College (London) designed the process, from biomass production to water treatment and generation of a model photobioreactor. This multimodal approach has produced promising first results, and further optimisation is expected to result in mass scaling of this process
Strangeness in Neutron Stars
It is generally agreed on that the tremendous densities reached in the
centers of neutron stars provide a high-pressure environment in which several
intriguing particles processes may compete with each other. These range from
the generation of hyperons to quark deconfinement to the formation of kaon
condensates and H-matter. There are theoretical suggestions of even more exotic
processes inside neutron stars, such as the formation of absolutely stable
strange quark matter. In the latter event, neutron stars would be largely
composed of strange quark matter possibly enveloped in a thin nuclear crust.
This paper gives a brief overview of these striking physical possibilities with
an emphasis on the role played by strangeness in neutron star matter, which
constitutes compressed baryonic matter at ultra-high baryon number density but
low temperature which is no accessible to relativistic heavy ion collision
experiments.Comment: 16 pages, 5 figures, 3 tables; Accepted for publication in the
Proceedings of the International Workshop on Astronomy and Relativistic
Astrophysics (IWARA) 2005, Int. J. Mod. Phys.
- …