77 research outputs found

    Influence of Spin Wave Excitations on the Ferromagnetic Phase Diagram in the Hubbard-Model

    Full text link
    The subject of the present paper is the theoretical description of collective electronic excitations, i.e. spin waves, in the Hubbard-model. Starting with the widely used Random-Phase-Approximation, which combines Hartree-Fock theory with the summation of the two-particle ladder, we extend the theory to a more sophisticated single particle approximation, namely the Spectral-Density-Ansatz. Doing so we have to introduce a `screened` Coulomb-interaction rather than the bare Hubbard-interaction in order to obtain physically reasonable spinwave dispersions. The discussion following the technical procedure shows that comparison of standard RPA with our new approximation reduces the occurrence of a ferromagnetic phase further with respect to the phase-diagrams delivered by the single particle theories.Comment: 8 pages, 9 figures, RevTex4, accepted for publication in Phys. Rev.

    Strong macroscale supercrystalline structures by 3D printing combined with self-assembly of ceramic functionalized nanoparticles

    Get PDF
    To translate the exceptional properties of colloidal nanoparticles (NPs) to macroscale geometries, assembly techniques must bridge a 106-fold range of length. Moreover, for successfully attaining a final mechanically robust nanocomposite macroscale material, some of the intrinsic NPs’ properties have to be maintained while minimizing the density of strength-limiting defects. However, the assembly of nanoscale building blocks into macroscopic dimensions, and their effective macroscale properties, are inherently affected by the precision of the conditions required for assembly and emergent flaws including point defects, dislocations, grain boundaries, and cracks. Herein, a direct-write self-assembly technique is used to construct free-standing, millimeter-scale columns comprising spherical iron oxide NPs (15 nm diameter) surface functionalized with oleic acid (OA), which self-assemble into face-centered cubic (FCC) supercrystals in minutes during the direct-writing process. The subsequent crosslinking of OA molecules results in nanocomposites with a maximum strength of 110 MPa and elastic modulus up to 58 GPa. These mechanical properties are interpreted according to the flaw size distribution and are as high as newly engineered platelet-based nanocomposites. The findings indicate a broad potential to create mechanically robust, multifunctional 3D structures by combining additive manufacturing with colloidal assembly.Financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 192346071, SFB 986 -, the National Science Foundation CAREER Award (CMMI-1346638, to A.J.H.), and from the MIT-Skoltech Next Generation Program. A.T.L.T. was supported by a postgraduate fellowship from DSO National Laboratories, Singapore. XRM at the University of Bremen was funded within the CO 1043 12-1 (Call for Major Equipment, XRM)

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Multiple Plant Surface Signals are Sensed by Different Mechanisms in the Rice Blast Fungus for Appressorium Formation

    Get PDF
    Surface recognition and penetration are among the most critical plant infection processes in foliar pathogens. In Magnaporthe oryzae, the Pmk1 MAP kinase regulates appressorium formation and penetration. Its orthologs also are known to be required for various plant infection processes in other phytopathogenic fungi. Although a number of upstream components of this important pathway have been characterized, the upstream sensors for surface signals have not been well characterized. Pmk1 is orthologous to Kss1 in yeast that functions downstream from Msb2 and Sho1 for filamentous growth. Because of the conserved nature of the Pmk1 and Kss1 pathways and reduced expression of MoMSB2 in the pmk1 mutant, in this study we functionally characterized the MoMSB2 and MoSHO1 genes. Whereas the Momsb2 mutant was significantly reduced in appressorium formation and virulence, the Mosho1 mutant was only slightly reduced. The Mosho1 Momsb2 double mutant rarely formed appressoria on artificial hydrophobic surfaces, had a reduced Pmk1 phosphorylation level, and was nonresponsive to cutin monomers. However, it still formed appressoria and caused rare, restricted lesions on rice leaves. On artificial hydrophilic surfaces, leaf surface waxes and primary alcohols-but not paraffin waxes and alkanes- stimulated appressorium formation in the Mosho1 Momsb2 mutant, but more efficiently in the Momsb2 mutant. Furthermore, expression of a dominant active MST7 allele partially suppressed the defects of the Momsb2 mutant. These results indicate that, besides surface hydrophobicity and cutin monomers, primary alcohols, a major component of epicuticular leaf waxes in grasses, are recognized by M. oryzae as signals for appressorium formation. Our data also suggest that MoMsb2 and MoSho1 may have overlapping functions in recognizing various surface signals for Pmk1 activation and appressorium formation. While MoMsb2 is critical for sensing surface hydrophobicity and cutin monomers, MoSho1 may play a more important role in recognizing rice leaf waxes

    Downregulation of pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels

    Get PDF
    Analyses of transgenic sugarcane clones with 45–95% reduced cytosolic pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) activity displayed no visual phenotypical change, but significant changes were evident in in vivo metabolite levels and fluxes during internode development. In three independent transgenic lines, sucrose concentrations increased between three- and sixfold in immature internodes, compared to the levels in the wildtype control. There was an eightfold increase in the hexose-phosphate:triose-phosphate ratio in immature internodes, a significant restriction in the triose phosphate to hexose phosphate cycle and significant increase in sucrose cycling as monitored by 13C nuclear magnetic resonance. This suggests that an increase in the hexose-phosphate concentrations resulting from a restriction in the conversion of hexose phosphates to triose phosphates drive sucrose synthesis in the young internodes. These effects became less pronounced as the tissue matured. Decreased expression of PFP also resulted in an increase of the ATP/ADP and UTP/UDP ratios, and an increase of the total uridine nucleotide and, at a later stage, the total adenine nucleotide pool, revealing strong interactions between PPi metabolism and general energy metabolism. Finally, decreased PFP leads to a reduction of PPi levels in older internodes indicating that in these developmental stages PFP acts in the gluconeogenic direction. The lowered PPi levels might also contribute to the absence of increases in sucrose contents in the more mature tissues of transgenic sugarcane with reduced PFP activity
    corecore