6,843 research outputs found

    Double Charge Exchange And Configuration Mixing

    Full text link
    The energy dependence of forward pion double charge exchange reactions on light nuclei is studied for both the Ground State transition and the Double-Isobaric-Analog-State transitions. A common characteristic of these double reactions is a resonance-like peak around 50 MeV pion lab energy. This peak arises naturally in a two-step process in the conventional pion-nucleon system with proper handling of nuclear structure and pion distortion. A comparison among the results of different nuclear structure models demonstrates the effects of configuration mixing. The angular distribution is used to fix the single particle wave function.Comment: Added 1 figure (now 8) corrected references and various other change

    Research Revisited: Cognitive Effects of Greek Affiliation in College: Additional Evidence

    Get PDF
    Previous research found broad based negative effects of fraternity/sorority affiliation on standardized measures of cognitive development after one year of college. Following the same sample, and employing essentially the same research design and analytic model, the present study found that the negative effects of fraternity/sorority affiliation were much less pronounced during the second or third years of college

    Boson mappings and four-particle correlations in algebraic neutron-proton pairing models

    Get PDF
    Neutron-proton pairing correlations are studied within the context of two solvable models, one based on the algebra SO(5) and the other on the algebra SO(8). Boson-mapping techniques are applied to these models and shown to provide a convenient methodological tool both for solving such problems and for gaining useful insight into general features of pairing. We first focus on the SO(5) model, which involves generalized T=1 pairing. Neither boson mean-field methods nor fermion-pair approximations are able to describe in detail neutron-proton pairing in this model. The analysis suggests, however, that the boson Hamiltonian obtained from a mapping of the fermion Hamiltonian contains a pairing force between bosons, pointing to the importance of boson-boson (or equivalently four-fermion) correlations with isospin T=0 and spin S=0. These correlations are investigated by carrying out a second boson mapping. Closed forms for the fermion wave functions are given in terms of the fermion-pair operators. Similar techniques are applied -- albeit in less detail -- to the SO(8) model, involving a competition between T=1 and T=0 pairing. Conclusions similar to those of the SO(5) analysis are reached regarding the importance of four-particle correlations in systems involving neutron-proton pairing.Comment: 31 pages, Latex, 3 Postscript figures, uses epsf.sty, submitted to Physical Review

    Bring a plate: facilitating experimentation in the Welcome Dinner Project

    Get PDF
    Drawing on in-depth empirical research, we explore a project called The Welcome Dinner (WDP). The WDP aims to bring together ‘newly arrived’ people and ‘established Australians’ to meet and ‘share stories’ over a potluck meal in ‘the comfort of their own home’. The purpose is to create meaningful connections, new friendships and social solidarities. In this paper, we focus on the micro-contexts of the dinners and the minute activities and techniques that facilitators use in hosting. Our aim is not to analyse the effects of the project but rather the design and meaning of the activities. As a form of ‘designed everyday multiculturalism’, focused on welcoming new arrivals to Australia, it takes effort, skill and labour to manage the contact between different cultural groups over organised meals. Thus, facilitators take over the hosting of the lunches and dinners to run activities, which are imagined to lubricate social dynamics and relations, and produce convivial commensal affects and behaviours. Drawing on theories of training activities as embodied and cognitive experimentations, which enable new knowledge practices and social relations, we analyse field notes and interviews about the facilitation, structure and activities at the WDP home dinners

    Local Density Approximation for proton-neutron pairing correlations. I. Formalism

    Full text link
    In the present study we generalize the self-consistent Hartree-Fock-Bogoliubov (HFB) theory formulated in the coordinate space to the case which incorporates an arbitrary mixing between protons and neutrons in the particle-hole (p-h) and particle-particle (p-p or pairing) channels. We define the HFB density matrices, discuss their spin-isospin structure, and construct the most general energy density functional that is quadratic in local densities. The consequences of the local gauge invariance are discussed and the particular case of the Skyrme energy density functional is studied. By varying the total energy with respect to the density matrices the self-consistent one-body HFB Hamiltonian is obtained and the structure of the resulting mean fields is shown. The consequences of the time-reversal symmetry, charge invariance, and proton-neutron symmetry are summarized. The complete list of expressions required to calculate total energy is presented.Comment: 22 RevTeX page

    Patterns of the ground states in the presence of random interactions: nucleon systems

    Full text link
    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular we present probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory framework) quadrupole moments and α\alpha clustering in the ground states. We find that the probability distribution for the parity of the ground states obtained by a two-body random ensemble simulates that of realistic nuclei: positive parity is dominant in the ground states of even-even nuclei while for odd-odd nuclei and odd-mass nuclei we obtain with almost equal probability ground states with positive and negative parity. In addition we find that for the ground states, assuming pure random interactions, low seniority is not favored, no dominance of positive values of spectroscopic quadrupole deformation, and no sign of α\alpha-cluster correlations, all in sharp contrast to realistic nuclei. Considering a mixture of a random and a realistic interaction, we observe a second order phase transition for the α\alpha-cluster correlation probability.Comment: 7 page

    Discovery of the Acoustic Faraday Effect in Superfluid 3He-B

    Full text link
    We report the discovery of the acoustic Faraday effect in superfluid 3He-B. The observation of this effect provides the first direct evidence for propagating transverse acoustic waves in liquid 3He, a mode first predicted by Landau in 1957. The Faraday rotation is large and observable because of spontaneously broken spin-orbit symmetry in 3He-B. We compare the experimental observations with a simulation of the transverse acoustic impedance that includes the field-induced circular birefringence of transverse waves.Comment: 4 pages in RevTex plus 3 postscript figures; new version includes: minor corrections to the text and an updated of list of reference

    Contribution of the massive photon decay channel to neutrino cooling of neutron stars

    Get PDF
    We consider massive photon decay reactions via intermediate states of electron-electron-holes and proton-proton-holes into neutrino-antineutrino pairs in the course of neutron star cooling. These reactions may become operative in hot neutron stars in the region of proton pairing where the photon due to the Higgs-Meissner effect acquires an effective mass mγm_{\gamma} that is small compared to the corresponding plasma frequency. The contribution of these reactions to neutrino emissivity is calculated; it varies with the temperature and the photon mass as T3/2mγ7/2e−mγ/TT^{3/2}m_{\gamma}^{7/2} e^{-m_{\gamma}/T} for T<mγT < m_{\gamma}. Estimates show that these processes appear as extra efficient cooling channels of neutron stars at temperatures T≃(109−1010)T \simeq (10^9-10^{10}) K.Comment: accepted to publication in Zh. Eksp. Teor. Fiz. (JETP

    Deformations of the fermion realization of the sp(4) algebra and its subalgebras

    Get PDF
    With a view towards future applications in nuclear physics, the fermion realization of the compact symplectic sp(4) algebra and its q-deformed versions are investigated. Three important reduction chains of the sp(4) algebra are explored in both the classical and deformed cases. The deformed realizations are based on distinct deformations of the fermion creation and annihilation operators. For the primary reduction, the su(2) sub-structure can be interpreted as either the spin, isospin or angular momentum algebra, whereas for the other two reductions su(2) can be associated with pairing between fermions of the same type or pairing between two distinct fermion types. Each reduction provides for a complete classification of the basis states. The deformed induced u(2) representations are reducible in the action spaces of sp(4) and are decomposed into irreducible representations.Comment: 28 pages, LaTeX 12pt article styl

    Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests

    Get PDF
    We present our first successful numerical results of 3D general relativistic simulations in which the Einstein equation as well as the hydrodynamic equations are fully solved. This paper is especially devoted to simulations of test problems such as spherical dust collapse, stability test of perturbed spherical stars, and preservation of (approximate) equilibrium states of rapidly rotating neutron star and/or corotating binary neutron stars. These test simulations confirm that simulations of coalescing binary neutron stars are feasible in a numerical relativity code. It is illustrated that using our numerical code, simulations of these problems, in particular those of corotating binary neutron stars, can be performed stably and fairly accurately for a couple of dynamical timescales. These numerical results indicate that our formulation for solving the Einstein field equation and hydrodynamic equations are robust and make it possible to perform a realistic simulation of coalescing binary neutron stars for a long time from the innermost circular orbit up to formation of a black hole or neutron star.Comment: 36 pages, to be published in PRD 15, erase unnecessary figure
    • 

    corecore