628 research outputs found

    Electonic transport properties of nitrate-doped carbon nanotube networks

    Full text link
    The conductivity of carbon nanotube (CNT) networks can be improved markedly by doping with nitric acid. In the present work, CNTs and junctions of CNTs functionalized with NO3_3 molecules are investigated to understand the microscopic mechanism of nitric acid doping. According to our density functional theory band structure calculations, there is charge transfer from the CNT to adsorbed molecules indicating p-type doping. The average doping efficiency of the NO3_3 molecules is higher if the NO3_3 molecules form complexes with water molecules. In addition to electron transport along individual CNTs, we have also studied electron transport between different types (metallic, semiconducting) of CNTs. Reflecting the differences in the electronic structures of semiconducting and metallic CNTs, we have found that besides turning semiconducting CNTs metallic, doping further increases electron transport most efficiently along semiconducting CNTs as well as through a junction between them.Comment: 13 pages, 12 figure

    Loneliness of Older Persons in Home Care In Iceland

    Get PDF
    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinnObjective: to explore the association between loneliness and affective, cognitive, physical and social factors for older persons in home care. Design: descriptive cross sectional study. Setting: random sample of home care clients in Reykjavik area. Subjects: 257 individuals were assessed with the Minimum Data Set for Home Care (InterRAI- HC) instrument. Results: 20.3% of home care clients expressed loneliness, 18.3% of men and 20.9% of women with widowed persons being more likely to be lonely than married persons, p=0.013, as were they who assessed their health as being poor, p=0.042 . Women with cognitive impairment were more likely to be lonely, p=0.022 and they were more likely to have depressive symptoms, p=0.025. Women who took more than six medications were more likely to be lonely (79.2% vs. 20.8%, p=0.018). Lonely women took more neuroleptics (p=0.007) but lonely males more hypnotics (p=0.046). Lonely women agreed more with the statement that they would be better of elsewhere (43.5% vs. 12.7%, p<0.0001). Being mostly indoors was not associated with loneliness and there was no association with use of formal care services. Conclusion: Loneliness was identified in one fifth of persons in home care, more often among widowed persons and women with cognitive impairment and among those who assessed their health as being poor. Sex difference was seen with regards to affective symptoms and medication use. Further studies are needed to understand how the needs of lonely persons in home care can be best met. Key words: loneliness, home care, elderly, primary, health carePrimary Health Care, VASS, Icelandic Gerontological Research center

    Equilibrium shape and dislocation nucleation in strained epitaxial nanoislands

    Full text link
    We study numerically the equilibrium shapes, shape transitions and dislocation nucleation of small strained epitaxial islands with a two-dimensional atomistic model, using simple interatomic pair potentials. We first map out the phase diagram for the equilibrium island shapes as a function of island size (up to N = 105 atoms) and lattice misfit with the substrate and show that nanoscopic islands have four generic equilibrium shapes, in contrast with predictions from the continuum theory of elasticity. For increasing substrate-adsorbate attraction, we find islands that form on top of a finite wetting layer as observed in Stranski-Krastanow growth. We also investigate energy barriers and transition paths for transitions between different shapes of the islands and for dislocation nucleation in initially coherent islands. In particular, we find that dislocations nucleate spontaneously at the edges of the adsorbate-substrate interface above a critical size or lattice misfit.Comment: 4 pages, 3 figures, uses wrapfig.sty and epsfig.st

    Self-learning Kinetic Monte-Carlo method: application to Cu(111)

    Full text link
    We present a novel way of performing kinetic Monte Carlo simulations which does not require an {\it a priori} list of diffusion processes and their associated energetics and reaction rates. Rather, at any time during the simulation, energetics for all possible (single or multi-atom) processes, within a specific interaction range, are either computed accurately using a saddle point search procedure, or retrieved from a database in which previously encountered processes are stored. This self-learning procedure enhances the speed of the simulations along with a substantial gain in reliability because of the inclusion of many-particle processes. Accompanying results from the application of the method to the case of two-dimensional Cu adatom-cluster diffusion and coalescence on Cu(111) with detailed statistics of involved atomistic processes and contributing diffusion coefficients attest to the suitability of the method for the purpose.Comment: 18 pages, 9 figure

    Stress release mechanisms for Cu on Pd(111) in the submonolayer and monolayer regimes

    Get PDF
    We study the strain relaxation mechanisms of Cu on Pd(111) up to the monolayer regime using two different computational methodologies, basin-hopping global optimization and energy minimization with a repulsive bias potential. Our numerical results are consistent with experimentally observed layer-by-layer growth mode. However, we find that the structure of the Cu layer is not fully pseudomorphic even at low coverages. Instead, the Cu adsorbates forms fcc and hcp stacking domains, separated by partial misfit dislocations. We also estimate the minimum energy path and energy barriers for transitions from the ideal epitaxial state to the fcc-hcp domain pattern.Comment: 4 pages, 4 figure

    Global transition path search for dislocation formation in Ge on Si(001)

    Get PDF
    Global optimization of transition paths in complex atomic scale systems is addressed in the context of misfit dislocation formation in a strained Ge film on Si(001). Such paths contain multiple intermediate minima connected by minimum energy paths on the energy surface emerging from the atomic interactions in the system. The challenge is to find which intermediate states to include and to construct a path going through these intermediates in such a way that the overall activation energy for the transition is minimal. In the numerical approach presented here, intermediate minima are constructed by heredity transformations of known minimum energy structures and by identifying local minima in minimum energy paths calculated using a modified version of the nudged elastic band method. Several mechanisms for the formation of a 90{\deg} misfit dislocation at the Ge-Si interface are identified when this method is used to construct transition paths connecting a homogeneously strained Ge film and a film containing a misfit dislocation. One of these mechanisms which has not been reported in the literature is detailed. The activation energy for this path is calculated to be 26% smaller than the activation energy for half loop formation of a full, isolated 60{\deg} dislocation. An extension of the common neighbor analysis method involving characterization of the geometrical arrangement of second nearest neighbors is used to identify and visualize the dislocations and stacking faults

    Do geese fully develop brood patches? A histological analysis of lesser snow geese (Chen caerulescens caerulescens) and Ross\u27s geese (C. rossii)

    Get PDF
    Most birds develop brood patches before incubation; epidermis and dermis in the brood patch region thicken, and the dermal connective tissue becomes increasingly vascularized and infiltrated by leukocytes. However, current dogma states that waterfowl incubate without modifications of skin within the brood patch region. The incubation periods of lesser snow geese (Chen caerulescens caerulescens; hereafter called snow geese) and Ross\u27s geese (C. rossii) are 2-6 days shorter than those of other goose species; only females incubate. Thus, we hypothesized that such short incubation periods would require fully developed brood patches for sufficient heat transfer from incubating parents to eggs. We tested this hypothesis by analyzing the skin histology of abdominal regions of snow and Ross\u27s geese collected at Karrak Lake, Nunavut, Canada. For female snow geese, we found that epidermis and dermis had thickened and vascularization of dermis was 14 times greater, on average, than that observed in males (n=5 pairs). Our results for Ross\u27s geese (n=5 pairs) were more variable, wherein only one of five female Ross\u27s geese fully developed a brood patch. Our results are consistent with three hypotheses about brood patch development and its relationship with different energetic cost-benefit relationships, resulting from differences in embryonic development and body size. © Springer-Verlag 2006
    corecore