7,656 research outputs found

    How superfluid vortex knots untie

    Full text link
    Knotted and tangled structures frequently appear in physical fields, but so do mechanisms for untying them. To understand how this untying works, we simulate the behavior of 1,458 superfluid vortex knots of varying complexity and scale in the Gross-Pitaevskii equation. Without exception, we find that the knots untie efficiently and completely, and do so within a predictable time range. We also observe that the centerline helicity -- a measure of knotting and writhing -- is partially preserved even as the knots untie. Moreover, we find that the topological pathways of untying knots have simple descriptions in terms of minimal 2D knot diagrams, and tend to concentrate in states along specific maximally chiral pathways.Comment: 5 figures and a supplemental PD

    Orientation-dependent handedness and chiral design

    Full text link
    Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems - a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial - and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles

    Tying knots in light fields

    Full text link
    We construct a new family of null solutions to Maxwell's equations in free space whose field lines encode all torus knots and links. The evolution of these null fields, analogous to a compressible flow along the Poynting vector that is both geodesic and shear-free, preserves the topology of the knots and links. Our approach combines the Bateman and spinor formalisms for the construction of null fields with complex polynomials on S3\mathbb{S}^3. We examine and illustrate the geometry and evolution of the solutions, making manifest the structure of nested knotted tori filled by the field lines.Comment: 5 pages, 3 figure

    Impact of the annealing temperature on Pt/g-C3N4 structure, activity and selectivity between photodegradation and water splitting

    Get PDF
    Acknowledgements: The authors would like to thank SABIC as well as EPSRC platform grant [EP/K015540/1] for financial support and the Royal Society of Chemistry for a Wolfson Merit Award. In order to protect intellectual property the data underpinning this publication are not made publicly available. All enquiries about the data should be addressed to [email protected] reviewedPostprin

    Fracture surface characteristics of notched angleplied graphite/epoxy composites

    Get PDF
    Composite fracture surface characteristics and related fracture modes have been investigated through extensive microscopic inspections of the fracture surfaces of notched angleplied graphite/epoxy laminates. The investigation involved 4 ply laminates of the configuration + or - theta (s) where theta = 0 deg, 3 deg, 5 deg, 10 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg, and 90 deg. Two-inch wide tensile specimens with 0.25 in. by 0.05 in. through-slits centered across the width were tested to fracture. The fractured surfaces were then removed and examined using a scanning electron microscope. Evaluation of the photomicrographs combined with analytical results obtained using the CODSTRAN computer code culminated in a unified set of fracture criteria for determining the mode of fracture in notched angleplied graphite/epoxy laminates

    Rectification of energy and motion in non-equilibrium parity violating metamaterials

    Full text link
    Uncovering new mechanisms for rectification of stochastic fluctuations has been a longstanding problem in non-equilibrium statistical mechanics. Here, using a model parity violating metamaterial that is allowed to interact with a bath of active energy consuming particles, we uncover new mechanisms for rectification of energy and motion. Our model active metamaterial can generate energy flows through an object in the absence of any temperature gradient. The nonreciprocal microscopic fluctuations responsible for generating the energy flows can further be used to power locomotion in, or exert forces on, a viscous fluid. Taken together, our analytical and numerical results elucidate how the geometry and inter-particle interactions of the parity violating material can couple with the non-equilibrium fluctuations of an active bath and enable rectification of energy and motion.Comment: 9 Pages + S

    Non-linear photonic crystals as a source of entangled photons

    Full text link
    Non-linear photonic crystals can be used to provide phase-matching for frequency conversion in optically isotropic materials. The phase-matching mechanism proposed here is a combination of form birefringence and phase velocity dispersion in a periodic structure. Since the phase-matching relies on the geometry of the photonic crystal, it becomes possible to use highly non-linear materials. This is illustrated considering a one-dimensional periodic Al0.4_{0.4}Ga0.6_{0.6}As / air structure for the generation of 1.5 μ\mum light. We show that phase-matching conditions used in schemes to create entangled photon pairs can be achieved in photonic crystals.Comment: 4 pages, 3 figure

    Enhancing cell therapies from the outside in: Cell surface engineering using synthetic nanomaterials

    Get PDF
    Therapeutic treatments based on the injection of living cells are in clinical use and preclinical development for diseases ranging from cancer to cardiovascular disease to diabetes. To enhance the function of therapeutic cells, a variety of chemical and materials science strategies are being developed that engineer the surface of therapeutic cells with new molecules, artificial receptors, and multifunctional nanomaterials, synthetically endowing donor cells with new properties and functions. These approaches offer a powerful complement to traditional genetic engineering strategies for enhancing the function of living cells.Massachusetts Institute of Technology. Center for Materials Science and Engineering (National Science Foundation (U.S.) DMR-0819762)United States. Dept. of Defense. Prostate Cancer Research Program (W81XWH-10-1-0290)National Institutes of Health (U.S.) (CA140476)National Institutes of Health (U.S.) (EB012352
    corecore