30 research outputs found

    <i>In silico</i> mapping of coronary artery disease genes

    Get PDF
    To date, more than 100 loci associated with coronary artery disease (CAD) have been detected in large-scale genome-wide studies. For some of the several hundreds of genes located in these loci, roles in the pathogenesis of the disease have been shown. However, the genetic mechanisms and specific genes controlling this disease are still not fully understood. This study is aimed at in silico search for new CAD genes. We performed a gene-based association analysis, where all polymorphic variants within a gene are analyzed simultaneously. The analysis was based on the results of the genome-wide association studies (GWAS) available from the open databases MICAD (120,575 people, 85,112 markers) and UK Biobank (337,199 people, 10,894,597 markers). We used the sumFREGAT package implementing a wide range of new methods for gene-based association analysis using summary statistics. We found 88 genes demonstrating significant gene-based associations. Forty-four of the identified genes were already known as CAD genes. Furthermore, we identified 28 additional genes in the known CAD loci. They can be considered as new candidate genes. Finally, we identified sixteen new genes (AGPAT4, ARHGEF12, BDP1, DHX58, EHBP1, FBF1, HSPB9, NPBWR2, PDLIM5, PLCB3, PLEKHM2, POU2F3, PRKD2, TMEM136, TTC29 and UTP20) outside the known loci. Information about the functional role of these genes allows us to consider many of them as candidates for CAD. The 41 identified genes did not have significant GWAS signals and they were identified only due to simultaneous consideration of all variants within the gene in the framework of gene-based analysis. These results demonstrate that gene-based association analysis is a powerful tool for gene mapping. The method can utilize huge amounts of GWAS results accumulated in the world to map different traits and diseases. This type of studies is widely available, as it does not require additional material costs

    A Combined Linkage and Exome Sequencing Analysis for Electrocardiogram Parameters in the Erasmus Rucphen Family Study

    Get PDF
    Electrocardiogram (ECG) measurements play a key role in the diagnosis and prediction of cardiac arrhythmias and sudden cardiac death. ECG parameters, such as the PR, QRS, and QT intervals, are known to be heritable and genome-wide association studies of these phenotypes have been successful in identifying common variants; however, a large proportion of the genetic variability of these traits remains to be elucidated. The aim of this study was to discover loci potentially harboring rare variants utilizing variance component linkage analysis in 1547 individuals from a large family-based study, the Erasmus Rucphen Family Study (ERF). Linked regions were further explored using exome sequencing. Five suggestive linkage peaks were identified: two for QT interval (1q24, LOD = 2.63; 2q34, LOD = 2.05), one for QRS interval (1p35, LOD = 2.52) and two for PR interval (9p22, LOD = 2.20; 14q11, LOD = 2.29). Fine-mapping using exome sequence data identified a C > G missense variant (c.713C > G, p.Ser238Cys) in the FCRL2 gene associated with QT (rs74608430; P = 2.8 x 10(-4), minor allele frequency = 0.019). Heritability analysis demonstrated that the SNP explained 2.42% of the trait's genetic variability in ERF (P = 0.02). Pathway analysis suggested that the gene is involved in cytosolic Ca2+ levels (P = 3.3 x 10(-3)) and AMPK stimulated fatty acid oxidation in muscle (P = 4.1 x 10(-3)). Look-ups in bioinformatics resources showed that expression of FCRL2 is associated with ARHGAP24 and SETBP1 expression. This finding was not replicated in the Rotterdam study. Combining the bioinformatics information with the association and linkage analyses, FCRL2 emerges as a strong candidate gene for QT interval

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases

    Automated workflow-based exploitation of pathway databases provides new insights into genetic associations of metabolite profiles

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets. Results: Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression. Conclusions: We demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression

    Genetic risk profiles for depression and anxiety in adult and elderly cohorts

    Get PDF
    The first generation of genome-wide association studies (GWA studies) for psychiatric disorders has led to new insights regarding the genetic architecture of these disorders. We now start to realize that a larger number of genes, each with a small contribution, are likely to explain the heritability of psychiatric diseases. The contribution of a large number of genes to complex traits can be analyzed with genome-wide profiling. In a discovery sample, a genetic risk profile for depression was defined based on a GWA study of 1738 adult cases and 1802 controls. The genetic risk scores were tested in two population-based samples of elderly participants. The genetic risk profiles were evaluated for depression and anxiety in the Rotterdam Study cohort and the Erasmus Rucphen Family (ERF) study. The genetic risk scores were significantly associated with different measures of depression and explained up to ∼0.7% of the variance in depression in Rotterdam Study and up to ∼1% in ERF study. The genetic score for depression was also significantly associated with anxiety explaining up to 2.1% in Rotterdam study. These findings suggest the presence of many genetic loci of small effect that influence both depression and anxiety. Remarkably, the predictive value of these profiles was as large in the sample of elderly participants as in the middle-aged samples

    Development and application of genomic control methods for genome-wide association studies using non-additive models

    Get PDF
    Genome-wide association studies (GWAS) comprise a powerful tool for mapping genes of complex traits. However, an inflation of the test statistic can occur because of population substructure or cryptic relatedness, which could cause spurious associations. If information on a large number of genetic markers is available, adjusting the analysis results by using the method of genomic control (GC) is possible. GC was originally proposed to correct the Cochran-Armitage additive trend test. For non-additive models, correction has been shown to depend on allele frequencies. Therefore, usage of GC is limited to situations where allele frequencies of null markers and candidate markers are matched. In this work, we extended the capabilities of the GC method for non-additive models, which allows us to use null markers with arbitrary allele frequencies for GC. Analytical expressions for the inflation of a test statistic describing its dependency on allele frequency and several population parameters were obtained for recessive, dominant, and over-dominant models of inheritance. We proposed a method to estimate these required population parameters. Furthermore, we suggested a GC method based on approximation of the correction coefficient by a polynomial of allele frequency and described procedures to correct the genotypic (two degrees of freedom) test for cases when the model of inheritance is unknown. Statistical properties of the described methods were investigated using simulated and real data. We demonstrated that all considered methods were effective in controlling type 1 error in the presence of genetic substructure. The proposed GC methods can be applied to statistical tests for GWAS with various models of inheritance. All methods developed and tested in this work were implemented using R language as a part of the GenABEL package

    Weighted functional linear regression models for gene-based association analysis

    Get PDF
    <div><p>Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with <i>P</i> < 0.1 in at least one analysis had lower <i>P</i> values with weighted models. Moreover, we found an association between diastolic blood pressure and the <i>VMP1</i> gene (<i>P</i> = 8.18×10<sup>−6</sup>), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had <i>P</i> = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at <a href="https://cran.r-project.org/web/packages/FREGAT/index.html" target="_blank">https://cran.r-project.org/web/packages/FREGAT/index.html</a>.</p></div

    A combined linkage, microarray and exome analysis suggests MAP3K11 as a candidate gene for left ventricular hypertrophy

    Get PDF
    Background: Electrocardiographic measures of left ventricular hypertrophy (LVH) are used as predictors of cardiovascular risk. We combined linkage and association analyses to discover novel rare genetic variants involved in three such measures and two principal components derived from them. Methods: The study was conducted among participants from the Erasmus Rucphen Family Study (ERF), a Dutch family-based sample from the southwestern Netherlands. Variance components linkage analyses were performed using Merlin. Regions of interest (LOD > 1.9) were fine-mapped using microarray and exome sequence data. Results: We observed one significant LOD score for the second principal component on chromosome 15 (LOD score = 3.01) and 12 suggestive LOD scores. Several loci contained variants identified in GWAS for these traits; however, these did not explain the linkage peaks, nor did other common variants. Exome sequence data identified two associated variants after multiple testing corrections were applied. Conclusions: We did not find common SNPs explaining these linkage signals. Exome sequencing uncovered a relatively rare variant in MAPK3K11 on chromosome 11 (MAF = 0.01) that helped account for the suggestive linkage peak observed for the first principal component. Conditional analysis revealed a drop in LOD from 2.01 to 0.88 for MAP3K11, suggesting that this variant may partially explain the linkage signal at this chromosomal location. MAP3K11 is related to the JNK pathway and is a pro-apoptotic kinase that plays an important role in the induction of cardiomyocyte apoptosis in various pathologies, including LVH

    A genome-wide linkage study of individuals with high scores on NEO personality traits

    Full text link
    peer reviewedThe NEO-Five-Factor Inventory divides human personality traits into five dimensions: neuroticism, extraversion, openness, conscientiousness and agreeableness. In this study, we sought to identify regions harboring genes with large effects on the five NEO personality traits by performing genome-wide linkage analysis of individuals scoring in the extremes of these traits ( > 90th percentile). Affected-only linkage analysis was performed using an Illumina 6K linkage array in a family-based study, the Erasmus Rucphen Family study. We subsequently determined whether distinct, segregating haplotypes found with linkage analysis were associated with the trait of interest in the population. Finally, a dense single-nucleotide polymorphism genotyping array (Illumina 318K) was used to search for copy number variations (CNVs) in the associated regions. In the families with extreme phenotype scores, we found significant evidence of linkage for conscientiousness to 20p13 (rs1434789, log of odds (LOD) = 5.86) and suggestive evidence of linkage (LOD > 2.8) for neuroticism to 19q, 21q and 22q, extraversion to 1p, 1q, 9p and12q, openness to 12q and 19q, and agreeableness to 2p, 6q, 17q and 21q. Further analysis determined haplotypes in 21q22 for neuroticism (P-values = 0.009, 0.007), in 17q24 for agreeableness (marginal P-value = 0.018) and in 20p13 for conscientiousness (marginal P-values = 0.058, 0.038) segregating in families with large contributions to the LOD scores. No evidence for CNVs in any of the associated regions was found. Our findings imply that there may be genes with relatively large effects involved in personality traits, which may be identified with next-generation sequencing techniques
    corecore