13,456 research outputs found

    Nonlocal correlations and spectral properties of the Falicov-Kimball model

    Full text link
    We derive an analytical expression for the local two-particle vertex of the Falicov-Kimball model, including its dependence on all three frequencies, the full vertex and all reducible vertices. This allows us to calculate the self energy in diagrammatic extensions of dynamical mean field theory, specifically in the dual fermion and the one-particle irreducible approach. Non-local correlations are thence included and originate here from charge density wave fluctuations. At low temperatures and in two dimensions, they lead to a larger self energy contribution at low frequencies and a more insulating spectrum.Comment: 12 pages, 10 figure

    Thermodynamic and spectral properties of compressed Ce calculated by the merger of the local density approximation and dynamical mean field theory

    Full text link
    We have calculated thermodynamic and spectral properties of Ce metal over a wide range of volume and temperature, including the effects of 4f electron correlations, by the merger of the local density approximation and dynamical mean field theory (DMFT). The DMFT equations are solved using the quantum Monte Carlo technique supplemented by the more approximate Hubbard I and Hartree Fock methods. At large volume we find Hubbard split spectra, the associated local moment, and an entropy consistent with degeneracy in the moment direction. On compression through the volume range of the observed gamma-alpha transition, an Abrikosov-Suhl resonance begins to grow rapidly in the 4f spectra at the Fermi level, a corresponding peak develops in the specific heat, and the entropy drops rapidly in the presence of a persistent, although somewhat reduced local moment. Our parameter-free spectra agree well with experiment at the alpha- and gamma-Ce volumes, and a region of negative curvature in the correlation energy leads to a shallowness in the low-temperature total energy over this volume range which is consistent with the gamma-alpha transition. As measured by the double occupancy, we find a noticeable decrease in correlation on compression across the transition; however, even at the smallest volumes considered, Ce remains strongly correlated with residual Hubbard bands to either side of a dominant Fermi-level structure. These characteristics are discussed in light of current theories for the volume collapse transition in Ce.Comment: 19 pages including 14 eps figure

    Divergences of the irreducible vertex functions in correlated metallic systems: Insights from the Anderson Impurity Model

    Full text link
    In this work, we analyze in detail the occurrence of divergences in the irreducible vertex functions for one of the fundamental models of many-body physics: the Anderson impurity model (AIM). These divergences -- a surprising hallmark of the breakdown of many-electron perturbation theory -- have been recently observed in several contexts, including the dynamical mean-field solution of the Hubbard model. The numerical calculations for the AIM presented in this work, as well as their comparison with the corresponding results for the Hubbard model, allow us to clarify several open questions about the origin and the properties of vertex divergences in a particularly interesting context, the correlated metallic regime at low-temperatures. Specifically, our analysis (i) rules out explicitly the transition to a Mott insulating phase, but not the more general suppression of charge fluctuations (proposed in [Phys.\,Rev.\,B {\bf 93},\,245102\,(2016)]), as a necessary condition for the occurrence of vertex divergences, (ii) clarifies their relation with the underlying Kondo physics, and, eventually, (iii) individuates which divergences might also appear on the real frequency axis in the limit of zero temperature, through the discovered scaling properties of the singular eigenvectors.Comment: 16 pages, 13 figures, published versio

    Comparing pertinent effects of antiferromagnetic fluctuations in the two and three dimensional Hubbard model

    Full text link
    We use the dynamical vertex approximation (DΓ\GammaA) with a Moriyaesque λ% \lambda correction for studying the impact of antiferromagnetic fluctuations on the spectral function of the Hubbard model in two and three dimensions. Our results show the suppression of the quasiparticle weight in three dimensions and dramatically stronger impact of spin fluctuations in two dimensions where the pseudogap is formed at low enough temperatures. Even in the presence of the Hubbard subbands, the origin of the pseudogap at weak-to-intermediate coupling is in the splitting of the quasiparticle peak. At stronger coupling (closer to the insulating phase) the splitting of Hubbard subbands is expected instead. The k\mathbf{k}-dependence of the self energy appears to be also much more pronounced in two dimensions as can be observed in the k\mathbf{k}-resolved DΓ\GammaA spectra, experimentally accessible by angular resolved photoemission spectroscopy in layered correlated systems.Comment: 10 pages, 12 figure

    Quantum criticality in the two-dimensional periodic Anderson model

    Full text link
    We study the phase diagram and quantum critical region of one of the fundamental models for electronic correlations: the periodic Anderson model. Employing the recently developed dynamical vertex approximation, we find a phase transition between a zero-temperature antiferromagnetic insulator and a Kondo insulator. In the quantum critical region, we determine a critical exponent γ ⁣= ⁣2\gamma\!=\!2 for the antiferromagnetic susceptibility. At higher temperatures, we have free spins with γ ⁣= ⁣1\gamma\!=\!1 instead, whereas at lower temperatures, there is an even stronger increase and suppression of the susceptibility below and above the quantum critical point, respectively.Comment: 6 pages, 4 figures (+ 6 pages Supplemental Material

    Tunable site- and orbital-selective Mott transition and quantum confinement effects in La0.5_{0.5}Ca0.5_{0.5}MnO3_3 nanoclusters

    Full text link
    We present a dynamical mean-field theory (DMFT) study of the charge and orbital correlations in finite-size La0.5_{0.5}Ca0.5_{0.5}MnO3_3 (LCMO) nanoclusters. Upon nanostructuring LCMO to clusters of 3 nm diameter, the size reduction induces an insulator-to-metal transition in the high-temperature paramagnetic phase. This is ascribed to the reduction in charge disproportionation between Mn sites with different nominal valence [Das et al., Phys. Rev. Lett. 107, 197202 (2011)]. Here we show that upon further reducing the system size to a few-atom nanoclusters, quantum confinement effects come into play. These lead to the opposite effect: the nanocluster turns insulating again and the charge disproportionation between Mn sites, as well as the orbital polarization, are enhanced. Electron doping by means of external gate voltage on few-atom nanoclusters is found to trigger a site- and orbital-selective Mott transition. Our results suggest that LCMO nanoclusters could be employed for the realization of technological devices, exploiting the proximity to the Mott transition and its control by size and gate voltage.Comment: 9 pages, 4 figure

    Synthetic aperture radar target simulator

    Get PDF
    A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal

    Cubic interaction parameters for t2g Wannier orbitals

    Full text link
    Many-body calculations for multi-orbital systems at present typically employ Slater or Kanamori interactions which implicitly assume a full rotational invariance of the orbitals, whereas the real crystal has a lower symmetry. In cubic symmetry, the low-energy t2gt_{2g} orbitals have an on-site Kanamori interaction, albeit without the constraint U=U+2JU = U' + 2J implied by spherical symmetry (UU: intra-orbital interaction, UU': inter-orbital interaction, JJ: Hund's exchange). Using maximally localized Wannier functions we show that deviations from the standard, spherically symmetric interactions are indeed significant for 5d5d orbitals (25\sim25% for BaOsO3_3 ; 12\sim12% if screening is included), but less important for 3d3d orbitals (6%\sim6\% for SrVO3_3; 1%\sim1\% if screened).Comment: 9 pages, 3 figures, 6 tables; as publishe

    Quantum criticality with a twist - interplay of correlations and Kohn anomalies in three dimensions

    Full text link
    A general understanding of quantum phase transitions in strongly correlated materials is still lacking. By exploiting a cutting-edge quantum many-body approach, the dynamical vertex approximation, we make an important progress, determining the quantum critical properties of the antiferromagnetic transition in the fundamental model for correlated electrons, the Hubbard model in three dimensions. In particular, we demonstrate that -in contradiction to the conventional Hertz-Millis-Moriya theory- its quantum critical behavior is driven by the Kohn anomalies of the Fermi surface, even when electronic correlations become strong.Comment: 6 pages, 4 figures (8 pages Supplemental Material
    corecore