We have calculated thermodynamic and spectral properties of Ce metal over a
wide range of volume and temperature, including the effects of 4f electron
correlations, by the merger of the local density approximation and dynamical
mean field theory (DMFT). The DMFT equations are solved using the quantum Monte
Carlo technique supplemented by the more approximate Hubbard I and Hartree Fock
methods. At large volume we find Hubbard split spectra, the associated local
moment, and an entropy consistent with degeneracy in the moment direction. On
compression through the volume range of the observed gamma-alpha transition, an
Abrikosov-Suhl resonance begins to grow rapidly in the 4f spectra at the Fermi
level, a corresponding peak develops in the specific heat, and the entropy
drops rapidly in the presence of a persistent, although somewhat reduced local
moment. Our parameter-free spectra agree well with experiment at the alpha- and
gamma-Ce volumes, and a region of negative curvature in the correlation energy
leads to a shallowness in the low-temperature total energy over this volume
range which is consistent with the gamma-alpha transition. As measured by the
double occupancy, we find a noticeable decrease in correlation on compression
across the transition; however, even at the smallest volumes considered, Ce
remains strongly correlated with residual Hubbard bands to either side of a
dominant Fermi-level structure. These characteristics are discussed in light of
current theories for the volume collapse transition in Ce.Comment: 19 pages including 14 eps figure